Maksim Dmitriev

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6614696/publications.pdf

Version: 2024-02-01

933447 996975 196 806 10 citations h-index papers

g-index 212 212 212 491 docs citations times ranked citing authors all docs

15

#	Article	IF	Citations
1	Preparation of novel ring-A fused azole derivatives of betulin and evaluation of their cytotoxicity. European Journal of Medicinal Chemistry, 2017, 125, 629-639.	5.5	38
2	Synthesis of cytotoxically active derivatives based on alkylated 2,3-seco-triterpenoids. European Journal of Medicinal Chemistry, 2017, 140, 74-83.	5 . 5	22
3	Direct metal-free synthesis of diarylamines from 2-nitropropane via the twofold C–H functionalization of arenes. RSC Advances, 2015, 5, 84849-84855.	3.6	20
4	Five-membered 2,3-dioxo heterocycles: LXX. Spiro heterocyclization of 1H-pyrrole-2,3-diones by the action of 1,5-binucleophiles. Crystalline and molecular structure of ethyl 1′-benzyl-7-methoxy-3,3-dimethyl-1,2′-dioxo-5′-phenyl-1′,2,2′,3,4,10-hexahydro-1H-spiro[acridine Russian Journal of Organic Chemistry, 2010, 46, 1173-1177.	-9,3a€²-p ₎	vrrole]-4′-ca
5	Adamantanyl-substituted PEPPSI-type palladium(II) N-heterocyclic carbene complexes: synthesis and catalytic application for CH activation of substituted thiophenes. Chemistry of Heterocyclic Compounds, 2019, 55, 217-228.	1.2	14
6	Five-membered 2,3-dioxoheterocycles: LXXIX. Three-component condensation of 1H-pyrrol-2,3-diones with acetonitriles and dimedone. Crystal and molecular structure of substituted spiro[chromene-4,3′-pyrrole]. Russian Journal of Organic Chemistry, 2011, 47, 1165-1168.	0.8	13
7	A four-component Biginelli reaction: new opportunities for the synthesis of functionalized pyrimidines. Chemistry of Heterocyclic Compounds, 2020, 56, 339-346.	1.2	13
8	Synthesis and Biological Activity of N-Aryl(alkyl)-2-[2-(9H-fluoren-9-ylidene)hydrazinylidene]-5,5-dimethyl-4-oxohexanamides. Russian Journal of General Chemistry, 2019, 89, 1388-1393.	0.8	12
9	Formal [3+3] Cyclocondensation of 4-Acyl-1H-pyrrole-2,3-diones with Five-Membered Cyclic Enamines To Form Substituted 1H-PyÂrazolo[3,4-b]pyridines and Isoxazolo[5,4-b]pyridines. Synthesis, 2017, 49, 2223-2230.	2.3	11
10	Synthesis of 1,4-benzothiazinones from acylpyruvic acids or furan-2,3-diones and <i>o</i> -aminothiophenol. Beilstein Journal of Organic Chemistry, 2020, 16, 2322-2331.	2.2	11
11	Three-component spiro heterocyclization of 1H-pyrrole-2,3-diones with acetonitriles and 4-hydroxycoumarin. Crystal and molecular structure of ethyl 2-amino-3-cyano-1′-cyclohexyl-2′,5-dioxo-5′-phenyl-1′,2′-dihydro-5H-spiro-[pyrano[3,2-c]chromer Russian Journal of Organic Chemistry, 2015, 51, 74-77.	ne-4,3倲- _F	pyrrole]-4�-
12	Spiroheterocyclization of Pyrrolobenzoxazinetriones under the Action of Thiobenzamide. Synthesis of Spiro[thiazolo-5,2 \hat{a} \in 2-pyrroles]. Russian Journal of Organic Chemistry, 2018, 54, 766-770.	0.8	10
13	Cationic—Anionic Pd(II) Complexes with Adamantylimidazolium Cation: Synthesis, Structural Study, and MAO-Inhibiting Activity. Russian Journal of Inorganic Chemistry, 2019, 64, 56-67.	1.3	10
14	Stereoselective synthesis of novel functionalized cyclohexanone derivatives via the condensation of aromatic aldehydes with acetoacetamide and the influence of the ortho-effect and autocondensation. Tetrahedron Letters, 2019, 60, 1592-1596.	1.4	10
15	Straightforward synthesis of novel spiroether derivatives. Synthetic Communications, 0, , 1-11.	2.1	10
16	Formation of 6-aryl-2-methyl-4-oxo-N,N'-diphenyl-2-cyclohexene-1,3-dicarboxamides from acetoacetanilide and aromatic aldehydes catalyzed by a mixture of aryl amines and iodine. Russian Journal of General Chemistry, 2016, 86, 58-61.	0.8	9
17	One-pot, three-component synthesis of spiro[indeno[1,2-b]quinoline-10,3′-pyrroles] via the Hantzsch-type reaction of 1H-pyrrole-2,3-diones. Tetrahedron Letters, 2017, 58, 67-70.	1.4	9
18	Structure and Analgesic Activity of 13-(N-Aryl(N,N-Diethyl)Aminocarbonyl)-9-Methyl-11-Thioxo-8-Oxa-10,12-Diazatricyclo [7.3.1.02,7]Trideca-2,4,6-Trienes and Their 10-N-Phenyl Derivatives. Pharmaceutical Chemistry Journal, 2018, 52, 515-517.	0.8	9

#	Article	IF	CITATIONS
19	Synthesis of 5-Aryl-4-aroyl-3-hydroxy-1-cyanomethyl-3-pyrrolin-2-ones. Russian Journal of General Chemistry, 2018, 88, 908-911.	0.8	9
20	Facile approach to alkaloid-like 6/6/5/5-tetracyclic spiroheterocycles via 1,3-dipolar cycloaddition reaction of fused 1H-pyrrole-2,3-diones with nitrones. Tetrahedron Letters, 2020, 61, 151595.	1.4	9
21	Regioselective [4 + 2]-cycloaddition of styrene to 4-isopropoxalyl-1H-pyrrole-2,3-diones. Russian Journal of Organic Chemistry, 2009, 45, 1873-1873.	0.8	8
22	Three component condensation of 1H-pyrrol-2,3-dione with malononitrile and 4-hydroxycoumarin. Russian Journal of Organic Chemistry, 2011, 47, 1263-1264.	0.8	8
23	One-pot multicomponent synthesis of highly substituted bicyclo[2.2.2]octane derivatives using bismuth nitrate as a catalyst. Tetrahedron Letters, 2016, 57, 2441-2444.	1.4	8
24	New nitrogen heterocycles containing a ferrocene fragment: Optical and physicochemical properties. Russian Journal of General Chemistry, 2017, 87, 470-478.	0.8	8
25	Synthesis and Prediction of the Ubiquinolâ€cytochrome c Reductase Inhibitory Activity of 3,4â€Dihydroisoquinolines and 2â€Azaspiro[4.5]decanes (Spiropyrrolines). Journal of Heterocyclic Chemistry, 2019, 56, 1634-1645.	2.6	8
26	Synthesis of <i>meta </i> -substituted anilines <i>via </i> at three-component reaction of acetone, amines, and 1,3-diketones. Organic and Biomolecular Chemistry, 2019, 17, 10030-10044.	2.8	8
27	Facile regiodivergent synthesis of spiro pyrrole-substituted pseudothiohydantoins and thiohydantoins via reaction of [e]-fused 1H-pyrrole-2,3-diones with thiourea. Beilstein Journal of Organic Chemistry, 2019, 15, 2864-2871.	2.2	8
28	Diversity-oriented synthesis of three skeletally diverse iminolactones from isocyanides, activated acetylenes and 1H-pyrrole-2,3-diones via [3+2] and [4+1] cycloaddition reactions. Tetrahedron, 2020, 76, 130880.	1.9	8
29	Three-component condensation of ethyl 4,5-dioxo-2-phenyl-4,5-dihydro-1H-pyrrole-3-carboxylates with malononitrile and 5,5-dimethylcyclohexane-1,3-dione. Russian Journal of Organic Chemistry, 2010, 46, 931-932.	0.8	7
30	Spiro-heterocyclization of 1H-pyrrole-2,3-dione at the treatment with 3-arylamino-1H-inden-1-ones. Russian Journal of Organic Chemistry, 2011, 47, 304-305.	0.8	7
31	Cycloaddition of alkenes to 4-Aroyl-1H-pyrrole-2,3-diones. crystal and molecular structure of substituted pyrano[4,3-b]pyrrole. Russian Journal of Organic Chemistry, 2015, 51, 1404-1407.	0.8	7
32	Synthesis of 8-aroylpyrrolo[1,2-a]pyrazine-1,6,7(2H)-triones and their reaction with water. New analogs of cyclic dipeptides. Russian Journal of Organic Chemistry, 2015, 51, 1587-1592.	0.8	7
33	Spiro-condensation of 5-methoxycarbonyl-1H-pyrrole-2,3-diones with cyclic enoles to form spiro substituted furo [3,2-c]-coumarins and quinolines. RSC Advances, 2016, 6, 84730-84737.	3.6	7
34	Synthesis of spiro[pyrrole-2,5′-[1,3]thiazoles] by heterocyclization of pyrrolobenzoxazinetriones with thiobenzamide. Russian Journal of Organic Chemistry, 2016, 52, 1363-1364.	0.8	7
35	Two concurrent pathways of the reaction of pyrrolobenzoxazinetriones with cyclic alkoxyolefins. Synthesis of alkaloid-like pentacyclic 6/6/5/6/5- and 6/6/5/6/6-angularly fused heterocycles. Russian Journal of Organic Chemistry, 2017, 53, 74-81.	0.8	7
36	Hetero-Diels–Alder reaction of 3-aroylpyrrolo[2,1-c][1,4]benzoxazines with styrene. Synthesis of pyrano[4′,3′: 2,3]pyrrolo[2,1-c][1,4]benzoxazines. Russian Journal of Organic Chemistry, 2017, 53, 1851-1856.	0.8	7

#	Article	IF	CITATIONS
37	Synthesis of Spiro[1,4-benzothiazine-2,2â \in 2-pyrroles] by Reaction of Pyrrolo[1,2-c][4,1]benzoxazepinetriones with 2-Aminobenzenethiol. Russian Journal of Organic Chemistry, 2018, 54, 1573-1575.	0.8	7
38	Synthesis, modification, and cytotoxic evaluation of 2,3-secotriterpenic \hat{l}^2 -ketoesters. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 3752-3760.	2.2	7
39	Three-Component Reaction of Dimedone with Aromatic Aldehydes and 5-Aminotetrazole. Russian Journal of General Chemistry, 2019, 89, 881-885.	0.8	7
40	Divergent synthesis of (quinoxalin-2-yl)-1,3-oxazines and pyrimido[1,6-a]quinoxalines via the cycloaddition reaction of acyl(quinoxalinyl)ketenes. Tetrahedron Letters, 2019, 60, 151088.	1.4	7
41	Nickel complexes as efficient catalysts in multicomponent synthesis of tetrahydropyridine derivatives. Synthetic Communications, 2020, 50, 3481-3489.	2.1	7
42	Synthesis of New 2-Aminopyrrole Derivatives by Reaction of Furan-2,3-diones 3-Acylhydrazones with CH-Nucleophiles. Russian Journal of General Chemistry, 2020, 90, 182-186.	0.8	7
43	Tricomponent spiro heterocyclization of pyrrolediones under the action of 4-hydroxycoumarin. Russian Journal of Organic Chemistry, 2015, 51, 746-747.	0.8	6
44	Three-component spiro heterocyclization of 1H-pyrrole-2,3-diones with malononitrile and pyrazolones. Crystal and molecular structure of a spiro[pyrano[2,3-c]-pyrazole-4,3′-pyrrole]. Russian Journal of Organic Chemistry, 2015, 51, 884-887.	0.8	6
45	Synthesis of 1-aryl-3a,8b-dihydroxy-3-(1-hydroxyethylidene)-1,3,3а,8b-tetrahydroindeno[1,2-b]pyrrole-2,4-diones. Russian Journal of Organic Chemistry, 2016, 52, 206-208.	0.8	6
46	New method for in situ generation of enolate-iminium 1,4-dipoles for $[4+2]$ and $[4+1]$ dipolar heterocycloaddition reactions. RSC Advances, 2016, 6, 90239-90247.	3.6	6
47	Synthesis of spiro[furo[3,4-b]pyran-4,3′-pyrroles] by reaction of pyrrolediones with malononitrile and tetronic acid. Russian Journal of Organic Chemistry, 2017, 53, 128-129.	0.8	6
48	Synthesis of pyrimido[1,6- <i>a</i>]quinoxalines via intermolecular trapping of thermally generated acyl(quinoxalin-2-yl)ketenes by Schiff bases. Beilstein Journal of Organic Chemistry, 2018, 14, 1734-1742.	2.2	6
49	Diastereoselective 1,3-Dipolar Cycloaddition of Nitrones to 1H-Pyrrole-2,3-diones. Synthesis of pyrrolo[3,2-d]isoxazoles. Russian Journal of Organic Chemistry, 2018, 54, 780-784.	0.8	6
50	Synthesis, Structure, and Biological Activity of 4-R-4-Oxo-2-[2-(phenylamino)benzoyl]hydrazinylidene-N-hetarylbutanamides. Russian Journal of General Chemistry, 2019, 89, 2345-2352.	0.8	6
51	Complexes of palladium(II) with N-heterocyclic carbenes from adamantylimidazole as precatalysts for thiophene and imidazole arylation. Russian Chemical Bulletin, 2019, 68, 2039-2047.	1.5	6
52	Substrate-dependent regiodivergent three-component condensation of 1H-pyrrole-2,3-diones, malononitrile and 4-hydroxyquinolin-2(1H)-ones. Tetrahedron, 2021, 88, 132129.	1.9	6
53	Reaction of Aroylpyrrolobenzothiazinetriones with Electronâ€Rich Dienophiles. ChemistrySelect, 2021, 6, 6295-6301.	1.5	6
54	Two directions in spiroheterocyclization of 1H-pyrrole-2,3-diones upon the action of 3-arylamino-1H-inden-1-ones. Russian Chemical Bulletin, 2012, 61, 59-63.	1.5	5

#	Article	IF	CITATIONS
55	Synthesis, structure, and antimicrobial activity of N,6-diaryl-4-methyl-2-oxo-1,2,3,6-tetrahydropyrimidine-5-carboxamides. Russian Journal of General Chemistry, 2016, 86, 2437-2441.	0.8	5
56	Synthesis of Imidazole Spiro Compounds From 5-Alkoxycarbonyl-1H-Pyrrole-2,3-Diones and Phenylurea. Chemistry of Heterocyclic Compounds, 2016, 52, 467-472.	1.2	5
57	Sodium hydrogen sulfate as a catalyst for the synthesis of N,4-diaryl-6-methyl-1-methyl(phenyl)-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-carboxamides via the Biginelli reaction. Chemistry of Heterocyclic Compounds, 2018, 54, 177-182.	1.2	5
58	Synthesis and Intramolecular Cyclization of a 2,3-seco-Oleanane Triterpenoid with an Ethylketone Fragment. Chemistry of Natural Compounds, 2018, 54, 1094-1099.	0.8	5
59	Reactions of 3-Aroylpyrrolo[1,2-a]quinoxaline-1,2,4(5H)-triones with 2,3-Dihydrofuran and 3,4-Dihydro-2H-pyran. Russian Journal of Organic Chemistry, 2018, 54, 1055-1060.	0.8	5
60	Ozonolysis of 18 \hat{l}_{\pm} -Oleanane triterpenoid with an alkenenitrile moiety in the five-membered ring A. Tetrahedron, 2018, 74, 4489-4494.	1.9	5
61	Diversity-Oriented Synthesis via Catalyst-Free Addition of Ketones to [e]-Fused 1H-Pyrrole-2,3-diones. Synthesis, 2018, 50, 4897-4904.	2.3	5
62	Synthesis of Pyrano $[4\hat{a}\in^2,3\hat{a}\in^2:2,3]$ pyrrolo $[1,2-a]$ quinoxalines by Reaction of Aroylpyrroloquinoxalines with Alkyl Vinyl Ethers. Russian Journal of Organic Chemistry, 2018, 54, 626-632.	0.8	5
63	Synthesis of Spiro[1,4-benzothiazine-2,2'-pyrroles] by the Reaction of Pyrrolo[2,1-c][1,4]oxazinetriones with 2-Aminobenzenethiol. Russian Journal of Organic Chemistry, 2020, 56, 935-938.	0.8	5
64	An Eco-Friendly Stereoselective Synthesis of Novel Derivatives of Indeno[1,2-b]Pyrrole and Indeno[1,2-c]Pyridazine. Polycyclic Aromatic Compounds, 2021, 41, 540-552.	2.6	5
65	Quaternary 2-R-5,6-dihydro-1,2,4-triazolo[3,4-a]isoquinolin-2-ium salts and PEPPSI complexes based thereof. Russian Chemical Bulletin, 2021, 70, 122-127.	1.5	5
66	Alkaloid-like annulated pyrano [4,3-b] pyrroles: antiviral activity and hydrolysis. Chemistry of Heterocyclic Compounds, 2021, 57, 483-489.	1.2	5
67	Synthesis and antimicrobial and antinociceptive activity of 4-substituted 2-trichloromethyl-3H-1,5-benzodiazepines. Russian Chemical Bulletin, 2021, 70, 1408-1414.	1.5	5
68	Novel Approach to the Synthesis of 3-amino-4-arylpyridin-2(1H)-one Derivatives. Chemistry of Heterocyclic Compounds, 2021, 57, 764-771.	1.2	5
69	Three-component spiro heterocyclization of pyrrolediones with malononitrile and pyrazolone. Russian Journal of Organic Chemistry, 2014, 50, 1549-1550.	0.8	4
70	Three-component spiro heterocyclization of pyrrole-2,3-diones with malononitrile and indan-1,3-dione. Russian Journal of Organic Chemistry, 2016, 52, 600-601.	0.8	4
71	Synthesis of diethyl 6-aryl-3,6-dihydrotetrazolo-[1,5-a]pyrimidine-4,5-dicarboxylates. Russian Journal of Organic Chemistry, 2016, 52, 558-561.	0.8	4
72	Reaction of methyl 3-aroyl-1-aryl-4,5-dioxo-4,5-dihydro-1H-pyrrole-2-carboxylates with arylhydrazines. synthesis of isomeric 5-arylcarbamoyl-4-aroyl- and 5-aryl-4-aryloxamoyl-1H-pyrazoles. Russian Journal of Organic Chemistry, 2016, 52, 546-552.	0.8	4

#	Article	IF	CITATIONS
73	Synthesis of N-aryl- and N,N-diethyl-9-methyl-11-sulfanylidene-8-oxa-10,12-diazatricyclo[7.3.1.02,7]trideca-2,4,6-triene-13-carboxamides. Russian Journal of Organic Chemistry, 2016, 52, 1022-1025.	0.8	4
74	Spirobisheterocyclization of 5-(Methoxycarbonyl)-1H-pyrrol-2,3-diones by the action of enaminoesters. Crystal and molecular structure of 1,7-diazaspiro[4.4]nonane. Russian Journal of Organic Chemistry, 2016, 52, 706-710.	0.8	4
7 5	Synthesis of podands functionalized with 2-oxo(sulfanylidene)-1,2,3,4-tetrahydropyrimidine and 4,7-dihydrotetrazolo[1,5-a]pyrimidine fragments. Russian Journal of Organic Chemistry, 2017, 53, 1090-1093.	0.8	4
76	Synthesis of methyl 4-aryl-4-oxo-2-[(4-sulfamoylphenyl)amino]but-2-enoates and their reaction with ninhydrin. Russian Journal of Organic Chemistry, 2017, 53, 898-903.	0.8	4
77	Hetero-Diels–Alder Reaction of Aroylpyrrolo[1,2-a]quinoxalinetriones with Styrene. Russian Journal of Organic Chemistry, 2018, 54, 1515-1518.	0.8	4
78	Reaction of 5-Substituted 4-(Trufluoroacetyl)furan-2,3-diones with Schiff Bases. Russian Journal of Organic Chemistry, 2018, 54, 707-712.	0.8	4
79	Synthesis and Biological Activity of Compounds Obtained by Reacting Methyl Aroylpyruvates with Sulfadimidine. Russian Journal of General Chemistry, 2018, 88, 1095-1102.	0.8	4
80	Synthesis of Spiro[benzo[g]chromene-4,3′-pyrroles] by Reaction of Pyrrolediones with Malononitrile and 2-Hydroxynaphthalene-1,4-dione. Russian Journal of Organic Chemistry, 2018, 54, 657-658.	0.8	4
81	A simple method for the synthesis of pyrazolo[1,5-d][1,2,4]triazines via the reaction of tetracarbonyl compounds with thiocarbonohydrazide. Chemistry of Heterocyclic Compounds, 2019, 55, 897-901.	1.2	4
82	Synthesis and Biological Activity of 5-Aryl-N-{4-[(1,3-thiazol-2-yl)sulfamoyl]phenyl}-1-phenyl-1H-pyrazole-3-carboxamides and Their Salts. Russian Journal of General Chemistry, 2019, 89, 680-688.	0.8	4
83	Ferrocenyltriazoles from $3\hat{l}^2$,28-Diacylbetulin: Synthesis and Cytotoxic Activity. Russian Journal of Organic Chemistry, 2019, 55, 1690-1697.	0.8	4
84	Synthesis of 1,2-azole derivatives on the basis of \hat{l}_{\pm},\hat{l}^2 -unsaturated triterpene aldehydes. Chemistry of Heterocyclic Compounds, 2020, 56, 1321-1328.	1.2	4
85	Synthesis, in vitro antibacterial activity against <i>Mycobacterium tuberculosis</i> , and reverse dockingâ€based target fishing of 1,4â€benzoxazinâ€2â€one derivatives. Archiv Der Pharmazie, 2021, 354, e2000199.	4.1	4
86	[3+2]-Dipolar Cycloaddition of Nitrones to Pyrroloquinoxalinetriones. Russian Journal of Organic Chemistry, 2021, 57, 32-37.	0.8	4
87	Five-membered 2,3-dioxoheterocycles: LXVII. Pyrroledione-pyrroledion recyclization of isopropyl 2-(1-aryl-4,5-dioxo-2-phenyl-4,5-dihydro-1H-pyrrol-3-yl)-2-oxoacetates under the action of arylamines. Crystal and molecular structure of (2)-isopropyl 2-hydroxy-4,5-dioxo-1-phenyl-3-[phenyl(phenylamino)-methylene]pyrrolidine-2-carboxylate. Russian	0.8	3
88	Journal of Organic Chemistry, 2010, 46, 255-259. Recyclization of isopropyl 2-(1-aryl-4,5-dioxo-2-phenyl-4,5-dihydro-1H-pyrrol-3-yl)-2-oxoacetates by the action of thiourea. Russian Journal of Organic Chemistry, 2011, 47, 627-629.	0.8	3
89	Three-component spiro heterocyclization of 1H-pyrrole-2,3-diones with dimedone. Russian Journal of Organic Chemistry, 2014, 50, 1547-1548.	0.8	3
90	Synthesis of 16-aryl-15-oxadispiro [5.1.5.3] hexadecane-7,14-diones by reformatsky reaction. Russian Journal of Organic Chemistry, 2015, 51, 513-517.	0.8	3

#	Article	IF	CITATIONS
91	Regio- and diastereoselective 1,3-dipolar cycloaddition of nitrones to 1-(methylideneamino)-1H-pyrrole-2,3-dione. Russian Journal of Organic Chemistry, 2016, 52, 1531-1532.	0.8	3
92	Synthesis of 6-aryl-N,N-diethyl-4-methyl-2-sulfanylidene-1,2,3,6-tetrahydropyrimidine-5-carboxamides. Russian Journal of Organic Chemistry, 2016, 52, 567-570.	0.8	3
93	Synthesis of 1,10-seco-triterpenoids by the Beckmann fragmentation from allobetulin. Tetrahedron, 2017, 73, 6448-6455.	1.9	3
94	Thermolysis of 1-(methylideneamino)-1H-pyrrole-2,3-diones. Synthesis of pyrazolooxazines by $[4+2]$ -cycloaddition of azomethine imines to alkenes. Russian Journal of Organic Chemistry, 2017, 53, 1531-1536.	0.8	3
95	New facilities of Biginelli reaction. Synthesis of methyl 6-aryl-5-benzoyl-4-methoxy-2-oxohexahydropyrimidine-4-carboxylates. Russian Journal of Organic Chemistry, 2017, 53, 1675-1677.	0.8	3
96	Three-Component Synthesis of New Thieno [2,3-b] pyrrolo [2,3-d] quinolinones. Russian Journal of Organic Chemistry, 2018, 54, 1864-1867.	0.8	3
97	Synthesis and Structure of 2-(1Đ·Indol-1-yl)-6-ferrocenyl-4-(2-chloroimidazo[1,2-a]pyridin-3-yl)pyrimidine. Russian Journal of General Chemistry, 2018, 88, 1103-1107.	0.8	3
98	Three-Component Spiro Heterocyclization of Pyrrolediones with Malononitrile and Cyclic Enols. Russian Journal of Organic Chemistry, 2018, 54, 564-567.	0.8	3
99	Synthesis and Structure (Z)-N-Aryl-2-hydroxy-4-oxo-4-phenylbut-2-enamides. Russian Journal of General Chemistry, 2018, 88, 832-835.	0.8	3
100	Synthesis of Methyl 4-Aryl-4-oxo-2-{4-[(1,3-thiazol-2-yl)-sulfamoyl]phenylamino}but-2-enoates and Their Reactions with Ninhydrin. Russian Journal of Organic Chemistry, 2019, 55, 602-607.	0.8	3
101	Reformatsky Reaction of Methyl 1-Bromocyclopentane-1-carboxylate with 1-Aryl-3-(2-hydroxyphenyl)prop-2-en-1-ones. Russian Journal of Organic Chemistry, 2019, 55, 339-344.	0.8	3
102	Reaction of Acylpyruvic Acids and Their Esters with N-(2-Aminophenyl)acetamide. Russian Journal of Organic Chemistry, 2019, 55, 402-405.	0.8	3
103	Synthesis of Spiro[pyrrole-2,5′-thiazoles] by Heterocyclization of Pyrrolobenzoxazinetriones with Aromatic Aldehyde Thiosemicarbazones. Russian Journal of Organic Chemistry, 2019, 55, 108-114.	0.8	3
104	Annulation of $1 < i > H < /i > -pyrrole-2,3$ -diones by thioacetamide: an approach to 5-azaisatins. Beilstein Journal of Organic Chemistry, 2019, 15, 364-370.	2.2	3
105	Facile Synthesis of Regioisomeric N―Alkyl Substituted 3â€Methyleneâ€3,4â€dihydroquinoxalinâ€2(1 H)â€ones. ChemistrySelect, 2019, 4, 12774-12778.	1.5	3
106	Synthesis and Structure of 5-Aryl-4-[hydroxy(phenyl)methylene]-1-[2-(1H-indol-3-yl)ethyl]pyrrolidine-2,3-diones. Russian Journal of General Chemistry, 2019, 89, 2196-2200.	0.8	3
107	Synthesis of Pyrrolo[2,1-c][1,4]oxazine-1,6,7-triones by the Reaction of 3-Methylenemorpholin-2-ones with Oxalyl Chloride. Russian Journal of Organic Chemistry, 2020, 56, 1367-1373.	0.8	3
108	Synthesis of Spiro[pyrrole–pyrrolizidines] by 1,3-Dipolar Cycloaddition of Azomethine Ylides to 3-Ylidenepyrrol-2-ones. Russian Journal of Organic Chemistry, 2020, 56, 1166-1173.	0.8	3

#	Article	IF	CITATIONS
109	Three-Component Reaction of Pyrrolediones, Malononitrile, and Acyclic Enols. Russian Journal of Organic Chemistry, 2020, 56, 1217-1221.	0.8	3
110	Dipyrazolodioxadiazocines as shelf-stable "ready-to-use―precursors for an in situ generation of enolate-iminium 1,4-dipoles: a straightforward atom-economical approach to pyrazolo[5,1-d][1,3,5]dioxazines. Organic and Biomolecular Chemistry, 2020, 18, 3382-3391.	2.8	3
111	Reaction of 2- and 4-(Arylmethylideneamino)phenols with Methyl 1-Bromocyclohexanecarboxylate and Zinc. Russian Journal of Organic Chemistry, 2021, 57, 1275-1280.	0.8	3
112	The synthesis of 3-(het)aryl-6,7-dihydro-5H-[1,2,4]-triazolo[3,4-a][2]benzazepines. Chemistry of Heterocyclic Compounds, 2021, 57, 63-68.	1.2	3
113	Synthesis of N-aryl-2-methyl-4-oxo-3,4,5,6-tetrahydro-2H-2,6-methano-1,3,5-benzoxadiazocine-11-carboxamides. Russian Journal of Organic Chemistry, 2017, 53, 869-872.	0.8	3
114	Cycloaddition of Huisgen 1,4-dipoles: synthesis and rapid epimerization of functionalized spiropyrido $[2,1-\langle i\rangle b\langle i\rangle][1,3]$ oxazine-pyrroles and related products. RSC Advances, 2021, 12, 578-587.	3.6	3
115	Recyclization of isopropyl (1-aryl-4,5-dioxo-2-phenyl-4,5-dihydro-1H-pyrrol-3-yl)oxoacetates by the action of o-aminophenol. Russian Journal of Organic Chemistry, 2009, 45, 1414-1415.	0.8	2
116	Three-component spiro heterocyclization of 1H-pyrrole-2,3-dione by the action of 3-arylamino-1H-inden-1-ones. Russian Journal of Organic Chemistry, 2011, 47, 1904-1905.	0.8	2
117	Iminofuran chemistry. Unexpected direction of reaction between 5-(4-methylphenyl)-2-(2-methylphenylimino)furan-3-one with ethylenediamine. Russian Journal of Organic Chemistry, 2015, 51, 284-286.	0.8	2
118	Synthesis, optical and electrochemical study of bipolar heterocyclic systems, including 1,2,4-oxadiazole moiety. Organic Photonics and Photovoltaics, 2016, 4, .	1.3	2
119	Baeyer–Villiger oxidation of N 1,N 3,2-triaryl-6-hydroxy-6-methyl-4-oxocyclohexane-1,3-dicarboxamides. Russian Journal of Organic Chemistry, 2016, 52, 379-382.	0.8	2
120	Three-component reaction of 5-aryl-4-(quinoxalin-2-yl)-furan-2,3-diones, acetylenedicarboxylic acid dimethyl ester, and triphenylphosphine. Russian Journal of Organic Chemistry, 2016, 52, 1183-1187.	0.8	2
121	Synthesis of stable 1,4-diionic organophosphorus compounds from the reaction between triphenylphosphine and diaroylacetylenes in the presence of 5-aryl-4-quinoxalin-2-yl-furan-2,3-diones. Phosphorus, Sulfur and Silicon and the Related Elements, 2017, 192, 950-953.	1.6	2
122	Synthesis of N-Aryl- and N,N-diethyl-2-methyl-3-phenyl-4-sulfanylidene-3,4,5,6-tetrahydro-2H-2,6-methano-1,3,5-benzoxadiazocine-11-carbo Russian Journal of Organic Chemistry, 2017, 53, 86-89.	o xas nides.	2
123	Synthesis and structure of N,6-diaryl-4-methyl-2-cyanoimino-1,2,3,6-tetrahydropyrimidine-5-carboxamides. Russian Journal of General Chemistry, 2017, 87, 350-352.	0.8	2
124	Thermolysis of 1-(methylideneamino)-1H-pyrrole-2,3-diones. Formation of pyrazolodioxazines at [4+2]-cycloaddition of azomethinimines to arylcarbaldehydes. Russian Journal of Organic Chemistry, 2017, 53, 729-733.	0.8	2
125	Synthesis and Biological Activity of 3,4-Diaryl-5-[4-(acetylsulfamoyl)phenyl]-4,5-dihydropyrrolo[3,4-c]pyrazol-6(2H)-ones and Their Sodium Salts. Russian Journal of General Chemistry, 2017, 87, 2776-2782.	0.8	2
126	Structure of Reaction Products of 1,3,4,6-Tetracarbonyl Compounds with o-Aminothiophenol. Synthesis of 3-aryl-1-(1,3-benzothiazol-2-yl)-3-hydroxyprop-2-en-1-ones. Russian Journal of Organic Chemistry, 2018, 54, 1735-1738.	0.8	2

#	Article	IF	CITATIONS
127	New π-Conjugated Ferrocenyl-Substituted Heterocyclic Systems Containing Electron-Deficient Aromatic Nitrogen Heterocycles. Russian Journal of Organic Chemistry, 2018, 54, 1350-1357.	0.8	2
128	Synthesis of Spiro[indole-3,2′-pyrroles] from Pyrrolopyrazinetriones and Aminocyclohexenones. Russian Journal of Organic Chemistry, 2018, 54, 951-953.	0.8	2
129	Synthesis and Acylation for Enaminoketohydrazides Derived from 2,2-Dialkyl-2,3-dihydrobenzo[f]isoquinolines. Russian Journal of Organic Chemistry, 2019, 55, 633-639.	0.8	2
130	Synthesis of 3,4-Dihydro-2H-[1,3]thiazino[3,2-c]quinazolinium Systems by Heterocyclization of 4-(Butenylsulfanyl)- and 4-(Cinnamylsulfanyl)qinazolines. Russian Journal of Organic Chemistry, 2019, 55, 748-754.	0.8	2
131	Synthesis of (3-Aroyl-2-aryl-4-hydroxy-5-oxo-2,5-dihydro-1H-pyrrol-1-yl)acetonitriles and Their Reaction with Hydrazine Hydrate. Russian Journal of Organic Chemistry, 2019, 55, 951-957.	0.8	2
132	Cleavage of Pyrrolo[2,1-c][1,4]benzoxazine-1,2,4-triones with Thiocarbonohydrazide. Synthesis of Substituted 4-Amino-1,2,4-triazines. Russian Journal of Organic Chemistry, 2019, 55, 1013-1018.	0.8	2
133	Simple synthesis of 2-[5-substituted-4-(trichloroacetyl)-1H-pyrazole-3-carbonyloxy]benzoic acids. Russian Chemical Bulletin, 2019, 68, 578-582.	1.5	2
134	Reaction of Hetareno[e]pyrrolediones with 1,3-C,N-Binucleophiles. Isolation of Intermediate Product of Spiro Heterocyclization. Russian Journal of Organic Chemistry, 2020, 56, 1321-1323.	0.8	2
135	Nucleophilic Addition of Oxindole to Pyrroloquinoxalinetriones. Russian Journal of Organic Chemistry, 2020, 56, 719-722.	0.8	2
136	Reactions of 5-Aryl-4-acyl-3-hydroxy-1-cyanomethyl-3-pyrrolin-2-ones with Aromatic Amines. Russian Journal of General Chemistry, 2020, 90, 39-44.	0.8	2
137	Reaction of N′-(Arylmethylidene)-2-oxo-2H-chromene-3-carbohydrazides with Methyl 1-Bromocycloalkanecarboxylates and Zinc. Russian Journal of General Chemistry, 2021, 91, 64-71.	0.8	2
138	Reaction of Pyrrolobenzoxazinetriones with Diphenylguanidine. Synthesis of Substituted Spiro[imidazole-2,2′-pyrroles]. Russian Journal of Organic Chemistry, 2021, 57, 108-112.	0.8	2
139	Crystal structures, packing features, Hirshfeld surface analyses and DFT calculations of hydrogen-bond energy of two homologous 8a-aryl-2,3,4,7,8,8a-hexahydropyrrolo[1,2- <i>a</i>) pyrimidin-6(1 <i>H</i>)-ones. Acta Crystallographica Section C. Structural Chemistry. 2020. 76, 483-489.	0.5	2
140	Amination of 5-Spiro-Substituted 3-Hydroxy-1,5-dihydro-2H-pyrrol-2-ones. Molecules, 2021, 26, 7179.	3.8	2
141	Pseudo-Three-Component Reaction of 3-(2-Oxo-2-phenylethylidene)-3,4-dihydro-2H-1,4-benzoxazin-2-ones with Oxalyl Chloride. Russian Journal of Organic Chemistry, 2022, 58, 159-162.	0.8	2
142	Dipolar [3+2]-Cycloaddition of Nitrones to 3-Alkoxycarbonyl- and 3-Pivaloyl-Substituted Hetareno[e]pyrrole-2,3-diones. Russian Journal of Organic Chemistry, 2022, 58, 287-294.	0.8	2
143	Five-membered 2,3-dioxo heterocycles: LXXII. Recyclization of isopropyl 2-(1-aryl-4,5-dioxo-2-phenyl-4,5-dihydro-1H-pyrrol-3-yl)-2-oxoacetates by the action of aliphatic amines. Russian Journal of Organic Chemistry, 2011, 47, 92-94.	0.8	1
144	Structure of ethyl E-6-bromo-4-[1-(methoxycarbonyl)cyclobutyl]-2-oxochromene-3-carboxylate. Journal of Structural Chemistry, 2015, 56, 1417-1419.	1.0	1

#	Article	IF	CITATIONS
145	Synthesis and antimicrobial activity of N,6-diaryl-4-methyl-2-thioxo-1,2,3,6-tetrahydropyrimidine-5-carboxamides. Russian Journal of General Chemistry, 2016, 86, 2666-2670.	0.8	1
146	Structure of 3-methyl-2,3,4,4a,5, 10b-hexahydro-1H-spiro[chromeno[3,4-c] pyridin-1,1'-cyclohexane]-2,4,5-trione. Journal of Structural Chemistry, 2016, 57, 1263-1265.	1.0	1
147	Reactions of N-arylamides of acetoacetic acid with ninhydrin in the presence of piperidine. Russian Journal of General Chemistry, 2016, 86, 1199-1201.	0.8	1
148	Synthesis of diethyl 6-aryl-2-oxo-1,2,3,6-tetrahydropyrimidine-4,5-dicarboxylates. Russian Journal of Organic Chemistry, 2016, 52, 730-733.	0.8	1
149	Regiodivergent condensation of 5-alkoxycarbonyl-1 <i>H</i> -pyrrol-2,3-diones with cyclic ketazinones en route to spirocyclic scaffolds. Beilstein Journal of Organic Chemistry, 2017, 13, 2179-2185.	2.2	1
150	Synthesis and Biological Activity of Mono- and Dibromo Derivatives of 2-Amino-5-(2-aryl-2-oxoethylidene)-4-oxo-1H-4,5-dihydrofuran-3-carboxylic Acids. Russian Journal of General Chemistry, 2018, 88, 1397-1401.	0.8	1
151	Three-Component Reaction of 1H-Pyrrole-2,3-diones with Tetronic Acid. Synthesis of 4,4-Bis(furan-3-yl)pyrroles. Russian Journal of Organic Chemistry, 2018, 54, 949-950.	0.8	1
152	Three-Component Spiro Heterocyclization of Pyrrolediones, Indane-1,3-dione, and Heterocyclic Enamines. Russian Journal of Organic Chemistry, 2019, 55, 650-654.	0.8	1
153	Opening of the Furandione Ring with o-Aminothiophenol: Synthesis of 2H-1,4-Benzothiazine-2,3(4H)-dione. Russian Journal of Organic Chemistry, 2019, 55, 716-718.	0.8	1
154	Three-Component Spiro Heterocyclization of Pyrrolediones with Aminoindenones. Synthesis of Spiro[diindeno[1,2-b:2′,1′-e]pyridine-11,3′-pyrroles]. Russian Journal of Organic Chemistry, 2019, 55, 93.	3- ⁹ 37.	1
155	Novel 2-alkoxy- and 2-alkylthio-substituted pyrimidines containing 2-(1-methyl-1H-pyrrol-2-yl)vinyl moieties: optical and electrochemical properties. Mendeleev Communications, 2019, 29, 47-49.	1.6	1
156	Two Stages in the Spiro Heterocyclization of 1H-Pyrrole-2,3-dione with a Carbocyclic Enol. Russian Journal of Organic Chemistry, 2019, 55, 406-408.	0.8	1
157	Transformations of A-seco-18αH-oleanane hydroxynitriles. Russian Chemical Bulletin, 2019, 68, 2252-2261.	1.5	1
158	Azo Coupling of Enamino Amides of the 3,3-Dimethyl-1,2,3,4-tetrahydroisoquinoline Series with Arenediazonium Salts. Russian Journal of Organic Chemistry, 2019, 55, 1476-1482.	0.8	1
159	Synthesis and Analgesic Activity of N,6-Diaryl-4-hydroxy-4-methyl-2-oxocyclohexane-1-carboxamides and Their Dehydration Products. Russian Journal of General Chemistry, 2020, 90, 1581-1590.	0.8	1
160	Synthesis of Oxirane Derivatives of 1H-Pyrrole-2,3-diones. Russian Journal of Organic Chemistry, 2020, 56, 193-196.	0.8	1
161	Synthesis of (7-Aryl-5-methyl-4,7-dihydrotetrazolo[1,5-a]pyrimidin-6-yl)(phenyl)methanones. Russian Journal of Organic Chemistry, 2020, 56, 395-399.	0.8	1
162	Reaction of Pyrrolo[2,1-c][1,4]oxazine-1,6,7-triones with 3-(Arylamino)-5,5-dimethylcyclohex-2-en-1-ones. Synthesis of Spiro[indole-3,2′-pyrroles]. Russian Journal of Organic Chemistry, 2021, 57, 13-19.	0.8	1

#	Article	IF	CITATIONS
163	Reaction of Reformatsky reagents with 2,5-diphenyl-1,3,4-oxadiazole. Mendeleev Communications, 2021, 31, 248-250.	1.6	1
164	Synthesis of (E)-5-Arylvinyl-7-methyltetrazolo[1,5-a]pyrimidines. Russian Journal of General Chemistry, 2021, 91, 621-625.	0.8	1
165	Reactions of 1-benzoyl-2,4-diphenyl-2,3-dihydro-1H-1,5-benzodiazepine with alicyclic Reformatsky reagents. Chemistry of Heterocyclic Compounds, 2021, 57, 92-94.	1.2	1
166	Reformatsky Reaction of 1-Aryl-3-(2-hydroxyphenyl)prop-2-en-1-ones with Methyl 1-Bromocyclohexanecarboxylate. Russian Journal of Organic Chemistry, 2020, 56, 2074-2078.	0.8	1
167	Reaction of Hetareno[e]pyrroleâ€2,3â€diones with Thiols: An Approach to Two Distinct 5â€Thioâ€6ubstituted Pyrroleâ€2â€one Derivatives. ChemistrySelect, 2021, 6, 12623-12627.	1.5	1
168	Regioselective [3+2] cycloaddition of nitrile oxides to 1Еpyrrole-2,3-diones: synthesis of spiro[pyrroledioxazoles]. Chemistry of Heterocyclic Compounds, 2021, 57, 1230-1234.	1.2	1
169	Regio- and Diastereoselective [4+2]-Cycloaddition of 4,5-Diaroyl-1H-pyrrole-2,3-diones and Cyclopentadiene. Russian Journal of Organic Chemistry, 2022, 58, 282-286.	0.8	1
170	Regioselective synthesis of benzo[g]- and benzo[f]quinolines by reaction of chalcones with naphthalen-2-amine. Russian Journal of Organic Chemistry, 2017, 53, 562-568.	0.8	0
171	Synthesis of benzo[d]pyrrolo[2,1-b][1,3]oxazines by intramolecular cyclization of 2,4-dioxabutanoic acids 2-(hydroxymethyl)phenylamides. Russian Journal of Organic Chemistry, 2017, 53, 793-795.	0.8	O
172	Acylation of Fischer's Base with Methyl Aroylpyruvates. Russian Journal of Organic Chemistry, 2018, 54, 139-142.	0.8	0
173	Recyclization of Pyrrolediones with Arylaminoindenones. Synthesis of Indeno[1,2-b]pyridines. Russian Journal of Organic Chemistry, 2018, 54, 1358-1362.	0.8	O
174	Reactions of Ethyl 2-Amino-5-(2-aryl-2-oxoethylidene)- 4-oxo-4,5-dihydrofuran-3-carboxylates and 2-Amino-5-(2-aryl- 2-oxoethylidene)-4-oxo-4,5-dihydrofuran-3-carbonitriles with Alcohols. Russian Journal of Organic Chemistry, 2018, 54, 573-577.	0.8	0
175	[3+3] Cyclocondensation of 4,5-Dibenzoyl-1H-pyrrole-2,3-diones with 3-Aminocyclopent-2-enone. Synthesis of Cyclopenta[b]pyridines. Russian Journal of Organic Chemistry, 2019, 55, 724-726.	0.8	O
176	Three-Component Spiro Heterocyclization of Pyrrolediones with Indan-1,3-dione and Acyclic Enamines. Russian Journal of Organic Chemistry, 2019, 55, 314-318.	0.8	0
177	Three-Component Reaction of $1,3,4,6$ -Tetraketones with Acetone and Amines. Russian Journal of Organic Chemistry, 2020, 56, 1317-1320.	0.8	O
178	Synthesis, Structure, and Antibacterial Activity of Alkyl 6-Aroyl-7-aryl-4,7-dihydrotetrazolo[1,5-a]pyrimidine-5-carboxylates. Russian Journal of General Chemistry, 2020, 90, 2053-2058.	0.8	0
179	Functionalization of the Methyl C(sp3)–H Bond of 2,3-Dimethylquinoxaline with 5-Arylfuran-2,3-diones. Russian Journal of Organic Chemistry, 2020, 56, 400-404.	0.8	O
180	Synthesis and Biological Activity of 4-Aryl-3,6-dihydroxy-6-methyl-4,5,6,7-tetrahydro-2H-indazole-5-carboxamides. Russian Journal of General Chemistry, 2021, 91, 57-63.	0.8	O

#	Article	IF	CITATIONS
181	CRYSTAL STRUCTURE AND PACKING FEATURES OF 3-(5-METHYL-1H-PYRAZOL-3-YL)-2H-CHROMEN-2-ONE AND 3-(3-METHYL-1H-PYRAZOL-3-YL)-2H-CHROMEN-2-ONE. Journal of Structural Chemistry, 2021, 62, 443-451.	1.0	0
182	[3+3]-Cyclocondensation of 4,5-Dibenzoyl-1H-pyrrole-2,3-diones with 5-Aminofuran. Synthesis of Furo [2,3-b] pyridines. Russian Journal of Organic Chemistry, 2021, 57, 1365-1367.	0.8	0
183	Synthesis and Structure of 9-Aryl-8-aryl(fur-2-yl)-4,9-dihydrotetrazolo[1′,5′:1,2]pyrimido[4,5-d]pyridazin-5(6H)-ones. Russian Journal of General Chemistry, 2021, 91, 1444-1447.	0.8	O
184	Nucleophilic Addition of Oxindole to Pyrrolobenzoxazinetriones. Russian Journal of Organic Chemistry, 2021, 57, 126-130.	0.8	0
185	Reaction of Pyrrolobenzoxazinetriones with N,N′-Disubstituted Ureas. Synthesis of Substituted Spiro[imidazole-2,2′-pyrroles]. Russian Journal of Organic Chemistry, 2021, 57, 1471-1478.	0.8	O
186	CRYSTAL STRUCTURE OF BIS[1-(DIAMINOMETHYLENE)-THIOURON-1-IUM] SULFATE. ChemChemTech, 2017, 60, 45.	0.3	0
187	SYNTHESIS AND STRUCTURE OF 4-(9-HYDROXY-1,4,7-TRIOXYNONYL)PHTHALONITRILE. ChemChemTech, 2017, 60, 15.	0.3	0
188	SYNTHESIS AND STRUCTURE OF 3,5-DIAMINO-1,2,4-TRIAZOLIUM TETRACHLORO-GALLATE. ChemChemTech, 2019, 62, 121-127.	0.3	0
189	Reaction of Methyl 1-Bromocyclohexanecarboxylate with Zinc and 3-Aryl-1-(2-hydroxyphenyl)prop-2-en-1-ones. Russian Journal of Organic Chemistry, 2020, 56, 2032-2035.	0.8	0
190	Synthesis of 3-Aroylpyrrolo[1,2-a][4,1]benzoxazepine-1,2,4(6H)-triones by the Reaction of 2-(2-Aryl-2-oxoethylidene)Â1,5-dihydro-4,1-benzoxazepin-3(2H)-ones with Oxalyl Chloride. Russian Journal of Organic Chemistry, 2021, 57, 1608-1613.	0.8	0
191	Synthesis of Hydantoins Spiro-Annulated to the Pyrrole Ring, by the Reaction of Pyrrolo[1,2-c][4,1]benzoxazepinetriones with Urea and Thiourea. Russian Journal of Organic Chemistry, 2022, 58, 244-248.	0.8	0
192	Reaction of 5,5'-(1,4-Phenylene)bis(3-aryl-2-oxaspiro[5.5]undec-3-en-1-ones) with Methyl 1-Bromocyclohexanecarboxylate and Zinc. Russian Journal of Organic Chemistry, 2022, 58, 249-252.	0.8	0
193	Reaction of 4,5-Diaroyl-1H-pyrrole-2,3-diones with Thiosemicarbazide. Synthesis of 1H-Pyrazole-5-carboxamides. Russian Journal of Organic Chemistry, 2021, 57, 2063-2066.	0.8	0
194	Synthesis of 2-[(Pyrrol-2-yl)sulfanyl]acetic Acids by Reaction of Pyrrolo[2,1-c][1,4]oxazinetriones with 2-Sulfanylacetic Acid. Russian Journal of Organic Chemistry, 2021, 57, 2067-2070.	0.8	0
195	Three-Component Reaction of 1H-Pyrrole-2,3-diones with Malononitrile and Phthalhydrazide. Russian Journal of Organic Chemistry, 2021, 57, 2077-2079.	0.8	O
196	Synthesis and Structure of Methyl 2-Amino-7-aryl-4-oxo-3H-pyrido[2,3-d]pyrimidine-5-carboxylates. Russian Journal of General Chemistry, 2022, 92, 766-770.	0.8	0