Xuanpeng Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/661458/publications.pdf

Version: 2024-02-01

73 papers 8,107 citations

50276 46 h-index 76900 **74** g-index

75 all docs

75 docs citations

75 times ranked

8768 citing authors

#	Article	IF	CITATIONS
1	General Oriented Formation of Carbon Nanotubes from Metal–Organic Frameworks. Journal of the American Chemical Society, 2017, 139, 8212-8221.	13.7	777
2	Highly Durable Na ₂ V ₆ O ₁₆ \hat{A} ·1.63H ₂ O Nanowire Cathode for Aqueous Zinc-Ion Battery. Nano Letters, 2018, 18, 1758-1763.	9.1	568
3	Self-smoothing anode for achieving high-energy lithium metal batteries under realistic conditions. Nature Nanotechnology, 2019, 14, 594-601.	31.5	451
4	Zn/V ₂ O ₅ Aqueous Hybrid-Ion Battery with High Voltage Platform and Long Cycle Life. ACS Applied Materials & Samp; Interfaces, 2017, 9, 42717-42722.	8.0	401
5	General synthesis of complex nanotubes by gradient electrospinning and controlled pyrolysis. Nature Communications, 2015, 6, 7402.	12.8	370
6	Earth Abundant Fe/Mn-Based Layered Oxide Interconnected Nanowires for Advanced K-Ion Full Batteries. Nano Letters, 2017, 17, 544-550.	9.1	356
7	Porous Nickel–Iron Selenide Nanosheets as Highly Efficient Electrocatalysts for Oxygen Evolution Reaction. ACS Applied Materials & Samp; Interfaces, 2016, 8, 19386-19392.	8.0	284
8	Vanadiumâ€Based Nanomaterials: A Promising Family for Emerging Metalâ€Ion Batteries. Advanced Functional Materials, 2020, 30, 1904398.	14.9	262
9	Comprehensive understanding of the roles of water molecules in aqueous Zn-ion batteries: from electrolytes to electrode materials. Energy and Environmental Science, 2021, 14, 3796-3839.	30.8	257
10	Defectâ€Rich Soft Carbon Porous Nanosheets for Fast and Highâ€Capacity Sodiumâ€lon Storage. Advanced Energy Materials, 2019, 9, 1803260.	19.5	214
11	Realizing Threeâ€Electron Redox Reactions in NASICONâ€Structured Na ₃ MnTi(PO ₄) ₃ for Sodiumâ€lon Batteries. Advanced Energy Materials, 2019, 9, 1803436.	19.5	171
12	Aqueous Zn//Zn(CF3SO3)2//Na3V2(PO4)3 batteries with simultaneous Zn2+/Na+intercalation/de-intercalation. Nano Energy, 2019, 58, 492-498.	16.0	161
13	ldentification of Phase Control of Carbonâ€Confined Nb ₂ O ₅ Nanoparticles toward Highâ€Performance Lithium Storage. Advanced Energy Materials, 2019, 9, 1802695.	19.5	161
14	Heterostructured Bi ₂ S ₃ â€"Bi ₂ O ₃ Nanosheets with a Built-In Electric Field for Improved Sodium Storage. ACS Applied Materials & Samp; Interfaces, 2018, 10, 7201-7207.	8.0	153
15	Novel K ₃ V ₂ (PO ₄) ₃ /C Bundled Nanowires as Superior Sodiumâ€ion Battery Electrode with Ultrahigh Cycling Stability. Advanced Energy Materials, 2015, 5, 1500716.	19.5	150
16	Polycrystalline soft carbon semi-hollow microrods as anode for advanced K-ion full batteries. Nanoscale, 2017, 9, 18216-18222.	5.6	150
17	Alkaline earth metal vanadates as sodium-ion battery anodes. Nature Communications, 2017, 8, 460.	12.8	136
18	Nanostructured Conversionâ€Type Negative Electrode Materials for Lowâ€Cost and Highâ€Performance Sodiumâ€Ion Batteries. Advanced Functional Materials, 2018, 28, 1804458.	14.9	132

#	Article	IF	Citations
19	Interface-modulated fabrication of hierarchical yolk–shell Co3O4/C dodecahedrons as stable anodes for lithium and sodium storage. Nano Research, 2017, 10, 2364-2376.	10.4	113
20	Porous V ₂ O ₅ microspheres: a high-capacity cathode material for aqueous zinc–ion batteries. Chemical Communications, 2019, 55, 8486-8489.	4.1	112
21	Electrostatic Assembly of Sandwich-like Ag-C@ZnO-C@Ag-C Hybrid Hollow Microspheres with Excellent High-Rate Lithium Storage Properties. ACS Nano, 2016, 10, 1283-1291.	14.6	109
22	Antimony nanoparticles anchored in three-dimensional carbon network as promising sodium-ion battery anode. Journal of Power Sources, 2016, 304, 340-345.	7.8	109
23	Three-dimensional carbon network confined antimony nanoparticle anodes for high-capacity K-ion batteries. Nanoscale, 2018, 10, 6820-6826.	5.6	109
24	Eutectic Electrolyte with Unique Solvation Structure for Highâ€Performance Zincâ€Ion Batteries. Angewandte Chemie - International Edition, 2022, 61, .	13.8	108
25	Yolk-shell-structured zinc-cobalt binary metal sulfide @ N-doped carbon for enhanced lithium-ion storage. Nano Energy, 2019, 64, 103899.	16.0	93
26	FeSe2 clusters with excellent cyclability and rate capability for sodium-ion batteries. Nano Research, 2017, 10, 3202-3211.	10.4	91
27	Realizing Superior Prussian Blue Positive Electrode for Potassium Storage via Ultrathin Nanosheet Assembly. ACS Sustainable Chemistry and Engineering, 2019, 7, 11564-11570.	6.7	87
28	Nonhierarchical Heterostructured Fe ₂ O ₃ /Mn ₂ O ₃ Porous Hollow Spheres for Enhanced Lithium Storage. Small, 2018, 14, e1800659.	10.0	83
29	Copper Silicate Hydrate Hollow Spheres Constructed by Nanotubes Encapsulated in Reduced Graphene Oxide as Long-Life Lithium-Ion Battery Anode. ACS Applied Materials & Diterfaces, 2015, 7, 26572-26578.	8.0	82
30	Thermal Induced Strain Relaxation of 1D Iron Oxide for Solid Electrolyte Interphase Control and Lithium Storage Improvement. Advanced Energy Materials, 2017, 7, 1601582.	19.5	73
31	3.0 V High Energy Density Symmetric Sodium-Ion Battery: Na ₄ V ₂ (PO ₄) ₃ â^\YNa ₃ V ₂ (PO _{ACS Applied Materials & Diterfaces, 2018, 10, 10022-10028.}	4 s/.s ub>)	<sต่อ>3</s
32	Facile synthesis of reduced graphene oxide wrapped nickel silicate hierarchical hollow spheres for long-life lithium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 19427-19432.	10.3	72
33	Single-Nanowire Electrochemical Probe Detection for Internally Optimized Mechanism of Porous Graphene in Electrochemical Devices. Nano Letters, 2016, 16, 1523-1529.	9.1	72
34	Comprehensive Insights into Electrolytes and Solid Electrolyte Interfaces in Potassium-Ion Batteries. Energy Storage Materials, 2021, 38, 30-49.	18.0	72
35	Novel MOF shell-derived surface modification of Li-rich layered oxide cathode for enhanced lithium storage. Science Bulletin, 2018, 63, 46-53.	9.0	67
36	Insights into the Storage Mechanism of Layered VS ₂ Cathode in Alkali Metalâ€lon Batteries. Advanced Energy Materials, 2020, 10, 1904118.	19.5	67

#	Article	IF	Citations
37	Ultrafast cation insertion-selected zinc hexacyanoferrate for 1.9ÂV K–Zn hybrid aqueous batteries. Journal of Materials Chemistry A, 2020, 8, 6631-6637.	10.3	66
38	A synergistic effect between layer surface configurations and K ions of potassium vanadate nanowires for enhanced energy storage performance. Journal of Materials Chemistry A, 2016, 4, 4893-4899.	10.3	65
39	Carbon-supported and nanosheet-assembled vanadium oxide microspheres for stable lithium-ion battery anodes. Nano Research, 2016, 9, 128-138.	10.4	64
40	A facile synthesis of three dimensional graphene sponge composited with sulfur nanoparticles for flexible Li–S cathodes. Physical Chemistry Chemical Physics, 2016, 18, 22146-22153.	2.8	63
41	Fast Ionic Storage in Aqueous Rechargeable Batteries: From Fundamentals to Applications. Advanced Materials, 2022, 34, e2105611.	21.0	62
42	Three dimensional V2O5/NaV6O15 hierarchical heterostructures: Controlled synthesis and synergistic effect investigated by in situ X-ray diffraction. Nano Energy, 2016, 27, 147-156.	16.0	61
43	Eutectic Electrolytes in Advanced Metal-Ion Batteries. ACS Energy Letters, 2022, 7, 247-260.	17.4	61
44	New-type K0.7Fe0.5Mn0.5O2 cathode with an expanded and stabilized interlayer structure for high-capacity sodium-ion batteries. Nano Energy, 2017, 35, 71-78.	16.0	60
45	Operando Xâ€ray Diffraction Characterization for Understanding the Intrinsic Electrochemical Mechanism in Rechargeable Battery Materials. Small Methods, 2017, 1, 1700083.	8.6	58
46	General Oriented Synthesis of Precise Carbon-Confined Nanostructures by Low-Pressure Vapor Superassembly and Controlled Pyrolysis. Nano Letters, 2017, 17, 7773-7781.	9.1	53
47	Suppressing the Jahn–Teller Effect in Mnâ€Based Layered Oxide Cathode toward Longâ€Life Potassiumâ€lon Batteries. Advanced Functional Materials, 2022, 32, .	14.9	52
48	Facile template-free synthesis of uniform carbon-confined V ₂ O ₃ hollow spheres for stable and fast lithium storage. Journal of Materials Chemistry A, 2018, 6, 6220-6224.	10.3	47
49	Realizing stable lithium and sodium storage with high areal capacity using novel nanosheet-assembled compact CaV4O9 microflowers. Nano Energy, 2018, 50, 606-614.	16.0	47
50	Interface-modulated approach toward multilevel metal oxide nanotubes for lithium-ion batteries and oxygen reduction reaction. Nano Research, 2016, 9, 2445-2457.	10.4	40
51	Amine-Wetting-Enabled Dendrite-Free Potassium Metal Anode. ACS Nano, 2022, 16, 7291-7300.	14.6	36
52	General oriented assembly of uniform carbon-confined metal oxide nanodots on graphene for stable and ultrafast lithium storage. Materials Horizons, 2018, 5, 78-85.	12.2	35
53	Three-dimensional graphene-supported nickel disulfide nanoparticles promise stable and fast potassium storage. Nanoscale, 2020, 12, 8255-8261.	5.6	35
54	Facile electrospinning formation of carbon-confined metal oxide cube-in-tube nanostructures for stable lithium storage. Chemical Communications, 2017, 53, 8284-8287.	4.1	34

#	Article	IF	CITATIONS
55	Porous CaFe ₂ O ₄ as a promising lithium ion battery anode: a trade-off between high capacity and long-term stability. Nanoscale, 2018, 10, 12963-12969.	5.6	33
56	Universal multifunctional hydrogen bond network construction strategy for enhanced aqueous Zn2+/proton hybrid batteries. Nano Energy, 2022, 100, 107539.	16.0	33
57	Ultra-fast and high-stable near-pseudocapacitance intercalation cathode for aqueous potassium-ion storage. Nano Energy, 2020, 77, 105069.	16.0	32
58	A mixed-valent vanadium oxide cathode with ultrahigh rate capability for aqueous zinc-ion batteries. Journal of Materials Chemistry A, 2021, 9, 22392-22398.	10.3	30
59	Graphene oxide-wrapped dipotassium terephthalate hollow microrods for enhanced potassium storage. Chemical Communications, 2018, 54, 11029-11032.	4.1	29
60	Building carbon cloth-based dendrite-free potassium metal anodes for potassium metal pouch cells. Journal of Materials Chemistry A, 2021, 9, 23046-23054.	10.3	27
61	Advances and perspectives on one-dimensional nanostructure electrode materials for potassium-ion batteries. Materials Today, 2022, 56, 114-134.	14.2	26
62	Gradient-temperature hydrothermal fabrication of hierarchical Zn ₂ SnO ₄ hollow boxes stimulated by thermodynamic phase transformation. Journal of Materials Chemistry A, 2016, 4, 14095-14100.	10.3	23
63	A Synergistic Naâ€Mnâ€O Composite Cathodes for Highâ€Capacity Naâ€Ion Storage. Advanced Energy Materials, 2018, 8, 1802180.	19.5	21
64	A "MOFs plus ZIFs―Strategy toward Ultrafine Co Nanodots Confined into Superficial N-Doped Carbon Nanowires for Efficient Oxygen Reduction. ACS Applied Materials & Samp; Interfaces, 2020, 12, 54545-54552.	8.0	21
65	Amine-assisted synthesis of FeS@N-C porous nanowires for highly reversible lithium storage. Nano Research, 2018, 11, 6206-6216.	10.4	20
66	Ammonium Ion and Structural Water <scp>Coâ€Assisted</scp> Zn ²⁺ Intercalation/ <scp>Deâ€Intercalation</scp> in <scp>NH₄V₄O₁₀</scp> â^™0. <scp>28H₂O</scp> ^{â€<td>4.9 sup>.</td><td>19</td>}	4.9 sup>.	19
67	A Bowknot-like RuO ₂ quantum dots@V ₂ O ₅ cathode with largely improved electrochemical performance. Physical Chemistry Chemical Physics, 2014, 16, 18680-18685.	2.8	17
68	A Stable CaV ₄ O ₉ ÂAnode Promises Nearâ€Zero Volume Change and Highâ€Capacity Lithium Storage. Advanced Energy Materials, 2021, 11, 2003612.	19.5	16
69	Eutectic Electrolyte with Unique Solvation Structure for Highâ€Performance Zincâ€lon Batteries. Angewandte Chemie, 2022, 134, .	2.0	16
70	Stepwise chelation-etching synthesis of carbon-confined ultrafine SnO2 nanoparticles for stable sodium storage. Chemical Communications, 2018, 54, 1469-1472.	4.1	14
71	Cheese-like porous SnP2O7 composite as a long-life and high-rate anode material for potassium-ion batteries. Chemical Engineering Journal, 2022, 439, 135777.	12.7	12
72	Research About Optimization Of Campus Network Security System. Procedia Engineering, 2011, 15, 1802-1806.	1.2	3

-	#	Article	IF	CITATIONS
	73	BnaA.bZIP1 Negatively Regulates a Novel Small Peptide Gene, BnaC.SP6, Involved in Pollen Activity. Frontiers in Plant Science, 2017, 8, 2117.	3.6	1