Lena Trotochaud

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6614383/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Prospects for the expansion of standing wave ambient pressure photoemission spectroscopy to reactions at elevated temperatures. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2022, 40, 013207.	2.1	2
2	Potential Pitfalls in Wastewater Phosphorus Analysis and How to Avoid Them. Environmental Health Insights, 2021, 15, 117863022110192.	1.7	1
3	NO2 Interactions with MoO3 and CuO at Atmospherically Relevant Pressures. Journal of Physical Chemistry C, 2021, 125, 16489-16497.	3.1	5
4	Constructing a pathway for mixed ion and electron transfer reactions for O2 incorporation in Pr0.1Ce0.9O2â^'x. Nature Catalysis, 2020, 3, 116-124.	34.4	40
5	Laboratory Demonstration and Preliminary Techno-Economic Analysis of an Onsite Wastewater Treatment System. Environmental Science & Technology, 2020, 54, 16147-16155.	10.0	10
6	Mechanisms of Degradation of Toxic Nerve Agents: Quantum-chemical Insight into Interactions of Sarin and Soman with Molybdenum Dioxide. Surface Science, 2020, 700, 121639.	1.9	7
7	Water-polyamide chemical interplay in desalination membranes explored by ambient pressure X-ray photoelectron spectroscopy. Physical Chemistry Chemical Physics, 2020, 22, 15658-15663.	2.8	3
8	Quantitative Characterization of a Desalination Membrane Model System by X-ray Photoelectron Spectroscopy. Langmuir, 2019, 35, 11315-11321.	3.5	12
9	Water (Non-)Interaction with MoO ₃ . Journal of Physical Chemistry C, 2019, 123, 16836-16842.	3.1	35
10	Identifying the Role of Dynamic Surface Hydroxides in the Dehydrogenation of Ti-Doped NaAlH ₄ . ACS Applied Materials & Interfaces, 2019, 11, 4930-4941.	8.0	19
11	Room temperature decomposition of dimethyl methylphosphonate on cuprous oxide yields atomic phosphorus. Surface Science, 2019, 680, 75-87.	1.9	20
12	Non-biological methods for phosphorus and nitrogen removal from wastewater: A gap analysis ofÂreinvented-toilet technologies with respect to ISO 30500. Gates Open Research, 2019, 3, 559.	1.1	7
13	Non-biological methods for phosphorus and nitrogen removal from wastewater: A gap analysis ofÂreinvented-toilet technologies with respect to ISO 30500. Gates Open Research, 2019, 3, 559.	1.1	4
14	X-Ray Spectroscopic Characterization of BaO, Ba(OH)2, BaCO3, and Ba(NO3)2. Journal of Electron Spectroscopy and Related Phenomena, 2018, 225, 55-61.	1.7	22
15	Water Adsorption and Dissociation on Polycrystalline Copper Oxides: Effects of Environmental Contamination and Experimental Protocol. Journal of Physical Chemistry B, 2018, 122, 1000-1008.	2.6	61
16	Coupling Ambient Pressure X-ray Photoelectron Spectroscopy with Density Functional Theory to Study Complex Surface Chemistry and Catalysis. Topics in Catalysis, 2018, 61, 2175-2184.	2.8	8
17	Dimethyl methylphosphonate adsorption and decomposition on MoO ₂ as studied by ambient pressure x-ray photoelectron spectroscopy and DFT calculations. Journal of Physics Condensed Matter, 2018, 30, 134005	1.8	19
18	Enhancing Graphene Protective Coatings by Hydrogen-Induced Chemical Bond Formation. ACS Applied Nano Materials, 2018, 1, 4509-4515.	5.0	19

Lena Trotochaud

#	Article	IF	CITATIONS
19	Thermal desorption of dimethyl methylphosphonate from MoO ₃ . Journal of Lithic Studies, 2017, 3, 112-118.	0.5	19
20	Ambient pressure photoelectron spectroscopy: Practical considerations and experimental frontiers. Journal of Physics Condensed Matter, 2017, 29, 053002.	1.8	63
21	In Situ Characterization of the Initial Effect of Water on Molecular Interactions at the Interface of Organic/Inorganic Hybrid Systems. Scientific Reports, 2017, 7, 45123.	3.3	36
22	Direct Mapping of Band Positions in Doped and Undoped Hematite during Photoelectrochemical Water Splitting. Journal of Physical Chemistry Letters, 2017, 8, 5579-5586.	4.6	53
23	Unravelling the Chemical Influence of Water on the PMMA/Aluminum Oxide Hybrid Interface In Situ. Scientific Reports, 2017, 7, 13341.	3.3	76
24	CO adsorption on Pd(100) studied by multimodal ambient pressure X-ray photoelectron and infrared reflection absorption spectroscopies. Surface Science, 2017, 665, 51-55.	1.9	25
25	Spectroscopic and Computational Investigation of Room-Temperature Decomposition of a Chemical Warfare Agent Simulant on Polycrystalline Cupric Oxide. Chemistry of Materials, 2017, 29, 7483-7496.	6.7	48
26	Adsorption of Dimethyl Methylphosphonate on MoO ₃ : The Role of Oxygen Vacancies. Journal of Physical Chemistry C, 2016, 120, 29077-29088.	3.1	66
27	Experimental and Computational Evidence of Highly Active Fe Impurity Sites on the Surface of Oxidized Au for the Electrocatalytic Oxidation of Water in Basic Media. ChemElectroChem, 2016, 3, 66-73.	3.4	44
28	Electron Spectroscopy and Computational Studies of Dimethyl Methylphosphonate. Journal of Physical Chemistry A, 2016, 120, 1985-1991.	2.5	17
29	Contributions to activity enhancement via Fe incorporation in Ni-(oxy)hydroxide/borate catalysts for near-neutral pH oxygen evolution. Chemical Communications, 2015, 51, 5261-5263.	4.1	138
30	Cobalt–Iron (Oxy)hydroxide Oxygen Evolution Electrocatalysts: The Role of Structure and Composition on Activity, Stability, and Mechanism. Journal of the American Chemical Society, 2015, 137, 3638-3648.	13.7	1,587
31	Role of Catalyst Preparation on the Electrocatalytic Activity of Ni _{1–<i>x</i>} Fe _{<i>x</i>} OOH for the Oxygen Evolution Reaction. Journal of Physical Chemistry C, 2015, 119, 18303-18316.	3.1	114
32	Effects of Fe Electrolyte Impurities on Ni(OH) ₂ /NiOOH Structure and Oxygen Evolution Activity. Journal of Physical Chemistry C, 2015, 119, 7243-7254.	3.1	806
33	Electrochemical Study of the Energetics of the Oxygen Evolution Reaction at Nickel Iron (Oxy)Hydroxide Catalysts. Journal of Physical Chemistry C, 2015, 119, 19022-19029.	3.1	282
34	Advanced and In Situ Analytical Methods for Solar Fuel Materials. Topics in Current Chemistry, 2015, 371, 253-324.	4.0	4
35	Precise oxygen evolution catalysts: Status and opportunities. Scripta Materialia, 2014, 74, 25-32.	5.2	165
36	Nickel–Iron Oxyhydroxide Oxygen-Evolution Electrocatalysts: The Role of Intentional and Incidental Iron Incorporation. Journal of the American Chemical Society, 2014, 136, 6744-6753.	13.7	2,659

#	Article	IF	CITATIONS
37	An Optocatalytic Model for Semiconductor–Catalyst Water-Splitting Photoelectrodes Based on In Situ Optical Measurements on Operational Catalysts. Journal of Physical Chemistry Letters, 2013, 4, 931-935.	4.6	130
38	Solution-Cast Metal Oxide Thin Film Electrocatalysts for Oxygen Evolution. Journal of the American Chemical Society, 2012, 134, 17253-17261.	13.7	1,403
39	Synthesis of Rutile-Phase Sn _{<i>x</i>} Ti _{1–<i>x</i>} O ₂ Solid-Solution and (SnO ₂) _{<i>x</i>} /(TiO ₂) _{1–<i>x</i>} Core/Shell Nanoparticles with Tunable Lattice Constants and Controlled Morphologies. Chemistry of Materials. 2011. 23. 4920-4930.	6.7	45