Lucas T Gray

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6613607/publications.pdf Version: 2024-02-01

Ιμέλς Τ. Ορλγ

#	Article	IF	CITATIONS
1	BarWare: efficient software tools for barcoded single-cell genomics. BMC Bioinformatics, 2022, 23, 106.	1.2	3
2	Functional enhancer elements drive subclass-selective expression from mouse to primate neocortex. Cell Reports, 2021, 34, 108754.	2.9	88
3	Simultaneous trimodal single-cell measurement of transcripts, epitopes, and chromatin accessibility using TEA-seq. ELife, 2021, 10, .	2.8	144
4	Enhancer viruses for combinatorial cell-subclass-specific labeling. Neuron, 2021, 109, 1449-1464.e13.	3.8	93
5	A taxonomy of transcriptomic cell types across the isocortex and hippocampal formation. Cell, 2021, 184, 3222-3241.e26.	13.5	479
6	Signature morpho-electric, transcriptomic, and dendritic properties of human layer 5 neocortical pyramidal neurons. Neuron, 2021, 109, 2914-2927.e5.	3.8	54
7	Single-cell and single-nucleus RNA-seq uncovers shared and distinct axes of variation in dorsal LGN neurons in mice, non-human primates, and humans. ELife, 2021, 10, .	2.8	41
8	Human neocortical expansion involves glutamatergic neuron diversification. Nature, 2021, 598, 151-158.	13.7	160
9	Comparative cellular analysis of motor cortex in human, marmoset and mouse. Nature, 2021, 598, 111-119.	13.7	361
10	Distinct Transcriptomic Cell Types and Neural Circuits of the Subiculum and Prosubiculum along the Dorsal-Ventral Axis. Cell Reports, 2020, 31, 107648.	2.9	49
11	Integrated Morphoelectric and Transcriptomic Classification of Cortical GABAergic Cells. Cell, 2020, 183, 935-953.e19.	13.5	290
12	Multimodal Analysis of Cell Types in a Hypothalamic Node Controlling Social Behavior. Cell, 2019, 179, 713-728.e17.	13.5	186
13	Conserved cell types with divergent features in human versus mouse cortex. Nature, 2019, 573, 61-68.	13.7	1,198
14	Single-cell transcriptomic evidence for dense intracortical neuropeptide networks. ELife, 2019, 8, .	2.8	98
15	Single-cell profiling of the developing mouse brain and spinal cord with split-pool barcoding. Science, 2018, 360, 176-182.	6.0	961
16	Single-nucleus and single-cell transcriptomes compared in matched cortical cell types. PLoS ONE, 2018, 13, e0209648.	1.1	400
17	Distinct descending motor cortex pathways and their roles in movement. Nature, 2018, 563, 79-84.	13.7	320
18	Shared and distinct transcriptomic cell types across neocortical areas. Nature, 2018, 563, 72-78.	13.7	1,323

LUCAS T GRAY

#	Article	IF	CITATIONS
19	A Suite of Transgenic Driver and Reporter Mouse Lines with Enhanced Brain-Cell-Type Targeting and Functionality. Cell, 2018, 174, 465-480.e22.	13.5	571
20	Layer-specific chromatin accessibility landscapes reveal regulatory networks in adult mouse visual cortex. ELife, 2017, 6, .	2.8	73
21	The Werner syndrome RECQ helicase targets G4 DNA in human cells to modulate transcription. Human Molecular Genetics, 2016, 25, 2060-2069.	1.4	81
22	Adult mouse cortical cell taxonomy revealed by single cell transcriptomics. Nature Neuroscience, 2016, 19, 335-346.	7.1	1,522
23	G quadruplexes are genomewide targets of transcriptional helicases XPB and XPD. Nature Chemical Biology, 2014, 10, 313-318.	3.9	183
24	Regulation of gene expression by the BLM helicase correlates with the presence of G-quadruplex DNA motifs. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 9905-9910.	3.3	108
25	The G4 Genome. PLoS Genetics, 2013, 9, e1003468.	1.5	437
26	Ubiquitin Recognition by the Cockayne Syndrome Group B Protein: Binding Will Set You Free. Molecular Cell, 2010, 38, 621-622.	4.5	5