
Gregory J Anderson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6613560/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A doxorubicin delivery platform using engineered natural membrane vesicle exosomes for targeted tumor therapy. Biomaterials, 2014, 35, 2383-2390.	11.4	1,352
2	A DNA nanorobot functions as a cancer therapeutic in response to a molecular trigger in vivo. Nature Biotechnology, 2018, 36, 258-264.	17.5	1,066
3	Hephaestin, a ceruloplasmin homologue implicated in intestinal iron transport, is defective in the sla mouse. Nature Genetics, 1999, 21, 195-199.	21.4	971
4	Iron-Overload–Related Disease in <i>HFE</i> Hereditary Hemochromatosis. New England Journal of Medicine, 2008, 358, 221-230.	27.0	649
5	Identification of an Intestinal Heme Transporter. Cell, 2005, 122, 789-801.	28.9	628
6	Disrupted hepcidin regulation in HFE -associated haemochromatosis and the liver as a regulator of body iron homoeostasis. Lancet, The, 2003, 361, 669-673.	13.7	568
7	Direct evidence for catalase and peroxidase activities of ferritin–platinum nanoparticles. Biomaterials, 2011, 32, 1611-1618.	11.4	397
8	Current understanding of iron homeostasis. American Journal of Clinical Nutrition, 2017, 106, 1559S-1566S.	4.7	393
9	Hepcidin expression inversely correlates with the expression of duodenal iron transporters and iron absorption in rats. Gastroenterology, 2002, 123, 835-844.	1.3	308
10	Controlling Assembly of Paired Gold Clusters within Apoferritin Nanoreactor for in Vivo Kidney Targeting and Biomedical Imaging. Journal of the American Chemical Society, 2011, 133, 8617-8624.	13.7	258
11	Sequentially Responsive Therapeutic Peptide Assembling Nanoparticles for Dual-Targeted Cancer Immunotherapy. Nano Letters, 2018, 18, 3250-3258.	9.1	255
12	Mechanistic and regulatory aspects of intestinal iron absorption. American Journal of Physiology - Renal Physiology, 2014, 307, G397-G409.	3.4	253
13	Reversal of pancreatic desmoplasia by re-educating stellate cells with a tumour microenvironment-activated nanosystem. Nature Communications, 2018, 9, 3390.	12.8	249
14	Bioengineered bacteria-derived outer membrane vesicles as a versatile antigen display platform for tumor vaccination via Plug-and-Display technology. Nature Communications, 2021, 12, 2041.	12.8	207
15	Ferroportin1 deficiency in mouse macrophages impairs iron homeostasis and inflammatory responses. Blood, 2011, 118, 1912-1922.	1.4	185
16	The orchestration of body iron intake: how and where do enterocytes receive their cues?. Blood Cells, Molecules, and Diseases, 2003, 30, 288-297.	1.4	180
17	Combined deletion of Hfe and transferrin receptor 2 in mice leads to marked dysregulation of hepcidin and iron overload. Hepatology, 2009, 50, 1992-2000.	7.3	180
18	Screening for Hemochromatosis in Asymptomatic Subjects With or Without a Family History. Archives of Internal Medicine, 2006, 166, 294.	3.8	173

#	Article	IF	CITATIONS
19	Intestinal iron absorption. Journal of Trace Elements in Medicine and Biology, 2012, 26, 115-119.	3.0	155
20	Iron absorption and metabolism. Current Opinion in Gastroenterology, 2009, 25, 129-135.	2.3	151
21	The regulation of iron transport. BioFactors, 2014, 40, 206-214.	5.4	148
22	Targeted Brain Delivery of Rabies Virus Glycoprotein 29-Modified Deferoxamine-Loaded Nanoparticles Reverses Functional Deficits in Parkinsonian Mice. ACS Nano, 2018, 12, 4123-4139.	14.6	145
23	Hepcidin Is Down-regulated in Alcoholic Liver Injury: Implications for the Pathogenesis of Alcoholic Liver Disease. Alcoholism: Clinical and Experimental Research, 2006, 30, 106-112.	2.4	138
24	Hephaestin is a ferroxidase that maintains partial activity in sex-linked anemia mice. Blood, 2004, 103, 3933-3939.	1.4	134
25	Nanoparticle-mediated local depletion of tumour-associated platelets disrupts vascular barriers and augments drug accumulation in tumours. Nature Biomedical Engineering, 2017, 1, 667-679.	22.5	132
26	Bacterial Outer Membrane Vesicles Presenting Programmed Death 1 for Improved Cancer Immunotherapy <i>via</i> Immune Activation and Checkpoint Inhibition. ACS Nano, 2020, 14, 16698-16711.	14.6	132
27	Transfusion suppresses erythropoiesis and increases hepcidin in adult patients with β-thalassemia major: a longitudinal study. Blood, 2013, 122, 124-133.	1.4	126
28	HFE C282Y homozygotes are at increased risk of breast and colorectal cancer. Hepatology, 2010, 51, 1311-1318.	7.3	123
29	Nanoparticulate iron(III) oxo-hydroxide delivers safe iron that is well absorbed and utilised in humans. Nanomedicine: Nanotechnology, Biology, and Medicine, 2014, 10, 1877-1886.	3.3	120
30	Hepatic Iron Metabolism. Seminars in Liver Disease, 2005, 25, 420-432.	3.6	112
31	Cloning and gastrointestinal expression of rat hephaestin: relationship to other iron transport proteins. American Journal of Physiology - Renal Physiology, 2001, 281, G931-G939.	3.4	111
32	Redox cycling metals: Pedaling their roles in metabolism and their use in the development of novel therapeutics. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 727-748.	4.1	111
33	Mechanisms of iron loading and toxicity. American Journal of Hematology, 2007, 82, 1128-1131.	4.1	109
34	Bacterial cytoplasmic membranes synergistically enhance the antitumor activity of autologous cancer vaccines. Science Translational Medicine, 2021, 13, .	12.4	109
35	Overexpression of Cellular Iron Import Proteins Is Associated with Malignant Progression of Esophageal Adenocarcinoma. Clinical Cancer Research, 2008, 14, 379-387.	7.0	108
36	Systemic regulation of Hephaestin and Ireg1 revealed in studies of genetic and nutritional iron deficiency. Blood, 2003, 102, 1893-1899.	1.4	104

#	Article	IF	CITATIONS
37	Effects of gestational age and surface modification on materno-fetal transfer of nanoparticles in murine pregnancy. Scientific Reports, 2012, 2, 847.	3.3	104
38	<i>HFE</i> C282Y/H63D compound heterozygotes are at low risk of hemochromatosis-related morbidity. Hepatology, 2009, 50, 94-101.	7.3	101
39	Modularly Designed Peptide Nanoprodrug Augments Antitumor Immunity of PD-L1 Checkpoint Blockade by Targeting Indoleamine 2,3-Dioxygenase. Journal of the American Chemical Society, 2020, 142, 2490-2496.	13.7	98
40	A genome-wide screen for modifiers of transgene variegation identifies genes with critical roles in development. Genome Biology, 2008, 9, R182.	9.6	97
41	Multiple Layerâ€byâ€Layer Lipidâ€Polymer Hybrid Nanoparticles for Improved FOLFIRINOX Chemotherapy in Pancreatic Tumor Models. Advanced Functional Materials, 2015, 25, 788-798.	14.9	96
42	The Clinical Relevance of Compound Heterozygosity for the C282Y and H63D Substitutions in Hemochromatosis. Clinical Gastroenterology and Hepatology, 2006, 4, 1403-1410.	4.4	92
43	Dihydrolipoic Acid–Gold Nanoclusters Regulate Microglial Polarization and Have the Potential To Alter Neurogenesis. Nano Letters, 2020, 20, 478-495.	9.1	92
44	lron Imports. I. Intestinal iron absorption and its regulation. American Journal of Physiology - Renal Physiology, 2005, 289, G631-G635.	3.4	91
45	The Ceruloplasmin Homolog Hephaestin and the Control of Intestinal Iron Absorption. Blood Cells, Molecules, and Diseases, 2002, 29, 367-375.	1.4	90
46	Decreased Hephaestin Activity in the Intestine of Copper-Deficient Mice Causes Systemic Iron Deficiency. Journal of Nutrition, 2006, 136, 1236-1241.	2.9	89
47	Excess iron modulates endoplasmic reticulum stress-associated pathways in a mouse model of alcohol and high-fat diet-induced liver injury. Laboratory Investigation, 2013, 93, 1295-1312.	3.7	89
48	The Natural History of Serum Iron Indices for HFE C282Y Homozygosity Associated With Hereditary Hemochromatosis. Gastroenterology, 2008, 135, 1945-1952.	1.3	86
49	Cancer Cell-derived Exosomes Induce Mitogen-activated Protein Kinase-dependent Monocyte Survival by Transport of Functional Receptor Tyrosine Kinases. Journal of Biological Chemistry, 2016, 291, 8453-8464.	3.4	83
50	Interacting signals in the control of hepcidin expression. BioMetals, 2009, 22, 77-87.	4.1	82
51	Transferrin receptor distribution and regulation in the rat small intestine. Gastroenterology, 1990, 98, 576-585.	1.3	81
52	Exome sequencing in HFE C282Y homozygous men with extreme phenotypes identifies a GNPAT variant associated with severe iron overload. Hepatology, 2015, 62, 429-439.	7.3	75
53	Elevated metal concentrations in the CF airway correlate with cellular injury and disease severity. Journal of Cystic Fibrosis, 2014, 13, 289-295.	0.7	71
54	Pyrosequencing reveals transient cystic fibrosis lung microbiome changes with intravenous antibiotics. European Respiratory Journal, 2014, 44, 922-930.	6.7	71

#	Article	IF	CITATIONS
55	The Multicopper Ferroxidase Hephaestin Enhances Intestinal Iron Absorption in Mice. PLoS ONE, 2014, 9, e98792.	2.5	70
56	Development of a Cancer Vaccine Using In Vivo Clickâ€Chemistryâ€Mediated Active Lymph Node Accumulation for Improved Immunotherapy. Advanced Materials, 2021, 33, e2006007.	21.0	70
57	An Extendable Star-Like Nanoplatform for Functional and Anatomical Imaging-Guided Photothermal Oncotherapy. ACS Nano, 2019, 13, 4379-4391.	14.6	65
58	Regulation of systemic iron homeostasis: how the body responds to changes in iron demand. BioMetals, 2007, 20, 665-74.	4.1	64
59	Double-edge sword roles of iron in driving energy production versus instigating ferroptosis. Cell Death and Disease, 2022, 13, 40.	6.3	61
60	Increased hepcidin expression and hypoferraemia associated with an acute phase response are not affected by inactivation of HFE. British Journal of Haematology, 2004, 126, 434-436.	2.5	60
61	Mechanisms of Haem and Non-Haem Iron Absorption: Lessons from Inherited Disorders of Iron Metabolism. BioMetals, 2005, 18, 339-348.	4.1	59
62	Hephaestin and Ceruloplasmin Play Distinct but Interrelated Roles in Iron Homeostasis in Mouse Brain. Journal of Nutrition, 2015, 145, 1003-1009.	2.9	56
63	Association of TMPRSS6 polymorphisms with ferritin, hemoglobin, and type 2 diabetes risk in a Chinese Han population. American Journal of Clinical Nutrition, 2012, 95, 626-632.	4.7	53
64	Iron metabolism in the hemoglobin-deficit mouse: correlation of diferric transferrin with hepcidin expression. Blood, 2006, 107, 1659-1664.	1.4	51
65	Severe iron deficiency blunts the response of the iron regulatory gene Hamp and pro-inflammatory cytokines to lipopolysaccharide. Haematologica, 2010, 95, 1660-1667.	3.5	50
66	Pyocyanin-induced toxicity in A549 respiratory cells is causally linked to oxidative stress. Toxicology in Vitro, 2011, 25, 1353-1358.	2.4	50
67	Nonâ€ŧransferrinâ€bound iron and cellular toxicity. Journal of Gastroenterology and Hepatology (Australia), 1999, 14, 105-108.	2.8	49
68	Small-molecule dissection of BMP signaling. Nature Chemical Biology, 2008, 4, 15-16.	8.0	48
69	<i>HFE</i> Cys282Tyr homozygotes with serum ferritin concentrations below 1000 μg/L are at low risk of hemochromatosis. Hepatology, 2010, 52, 925-933.	7.3	47
70	Serum hyaluronic acid with serum ferritin accurately predicts cirrhosis and reduces the need for liver biopsy in C282Y hemochromatosis. Hepatology, 2009, 49, 418-425.	7.3	46
71	Targeted Co-delivery of the Iron Chelator Deferoxamine and a HIF1α Inhibitor Impairs Pancreatic Tumor Growth. ACS Nano, 2019, 13, 2176-2189.	14.6	46
72	Emerging nanomedicines for anti-stromal therapy against desmoplastic tumors. Biomaterials, 2020, 232, 119745.	11.4	46

#	Article	IF	CITATIONS
73	The endocytosis of transferrin by rat intestinal epithelial cells. Gastroenterology, 1994, 106, 414-422.	1.3	43
74	Iron homeostasis. Current Opinion in Clinical Nutrition and Metabolic Care, 2016, 19, 276-281.	2.5	43
75	Molecular basis of iron-loading disorders. Expert Reviews in Molecular Medicine, 2010, 12, e36.	3.9	42
76	Heterozygous missense mutations in the GLRX5 gene cause sideroblastic anemia in a Chinese patient. Blood, 2014, 124, 2750-2751.	1.4	40
77	Hephaestin and ceruloplasmin facilitate iron metabolism in the mouse kidney. Scientific Reports, 2016, 6, 39470.	3.3	40
78	Nasal delivery of nanoliposome-encapsulated ferric ammonium citrate can increase the iron content of rat brain. Journal of Nanobiotechnology, 2017, 15, 42.	9.1	40
79	Stimulated erythropoiesis with secondary iron loading leads to a decrease in hepcidin despite an increase in bone morphogenetic protein 6 expression. British Journal of Haematology, 2012, 157, 615-626.	2.5	39
80	Iron metabolism meets signal transduction. Nature Genetics, 2006, 38, 503-504.	21.4	36
81	Essential but toxic: Controlling the flux of iron in the body. Clinical and Experimental Pharmacology and Physiology, 2012, 39, 719-724.	1.9	36
82	Functional Analysis of <i>GLRX5</i> Mutants Reveals Distinct Functionalities of GLRX5 Protein. Journal of Cellular Biochemistry, 2016, 117, 207-217.	2.6	36
83	Severe Iron Metabolism Defects in Mice With Double Knockout of the Multicopper Ferroxidases Hephaestin and Ceruloplasmin. Cellular and Molecular Gastroenterology and Hepatology, 2018, 6, 405-427.	4.5	36
84	Jagged1 (JAG1) mutation detection in an Australian Alagille syndrome population. Human Mutation, 2000, 16, 408-416.	2.5	35
85	Reduction of body iron in HFE -related haemochromatosis and moderate iron overload (Mi-Iron): a multicentre, participant-blinded, randomised controlled trial. Lancet Haematology,the, 2017, 4, e607-e614.	4.6	35
86	Penetration Cascade of Size Switchable Nanosystem in Desmoplastic Stroma for Improved Pancreatic Cancer Therapy. ACS Nano, 2021, 15, 14149-14161.	14.6	34
87	A family with attenuated familial adenomatous polyposis due to a mutation in the alternatively spliced region of APC exon 9. Human Mutation, 1998, 11, 450-455.	2.5	33
88	Intestinal transferrin receptors and iron absorption in the neonatal rat. British Journal of Haematology, 1991, 77, 229-236.	2.5	32
89	The Expression and Regulation of the Iron Transport Molecules Hephaestin and IREG1. Cell Biochemistry and Biophysics, 2002, 36, 137-146.	1.8	32
90	Mapping the Gene for Sex-Linked Anemia: An Inherited Defect of Intestinal Iron Absorption in the Mouse. Genomics, 1998, 48, 34-39.	2.9	31

#	Article	IF	CITATIONS
91	Altered lipid metabolism in Hfe-knockout mice promotes severe NAFLD and early fibrosis. American Journal of Physiology - Renal Physiology, 2011, 301, G865-G876.	3.4	31
92	Copper Ions and Coordination Complexes as Novel Carbapenem Adjuvants. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	31
93	Circulating iron levels influence the regulation of hepcidin following stimulated erythropoiesis. Haematologica, 2018, 103, 1616-1626.	3.5	30
94	Elevated iron absorption in the neonatal rat reflects high expression of iron transport genes in the distal alimentary tract. American Journal of Physiology - Renal Physiology, 2007, 293, G525-G531.	3.4	29
95	pHLIP-mediated targeting of truncated tissue factor to tumor vessels causes vascular occlusion and impairs tumor growth. Oncotarget, 2015, 6, 23523-23532.	1.8	29
96	Multi-copper ferroxidase deficiency leads to iron accumulation and oxidative damage in astrocytes and oligodendrocytes. Scientific Reports, 2019, 9, 9437.	3.3	29
97	Ferric iron reduction and iron assimilation in Saccharomyces cerevisiae. Journal of Inorganic Biochemistry, 1992, 47, 249-255.	3.5	27
98	Polymeric Nanoparticles Enhance the Ability of Deferoxamine To Deplete Hepatic and Systemic Iron. Nano Letters, 2018, 18, 5782-5790.	9.1	27
99	Revisiting hemochromatosis: genetic vs. phenotypic manifestations. Annals of Translational Medicine, 2021, 9, 731-731.	1.7	27
100	Control of iron absorption. Journal of Gastroenterology and Hepatology (Australia), 1996, 11, 1030-1032.	2.8	26
101	A novel mutation in ferroportin implicated in iron overload. Journal of Hepatology, 2007, 46, 921-926.	3.7	26
102	Regression of Fibrosis Stage With Treatment Reduces Long-Term Risk of Liver Cancer in Patients With Hemochromatosis Caused by Mutation in HFE. Clinical Gastroenterology and Hepatology, 2020, 18, 1851-1857.	4.4	26
103	Systemic Regulation of Intestinal Iron Absorption. IUBMB Life, 2005, 57, 499-503.	3.4	25
104	Natural history of <i><scp>HFE</scp></i> simple heterozygosity for <scp>C</scp> 282 <scp>Y</scp> and <scp>H</scp> 63 <scp>D</scp> : A prospective 12â€year study. Journal of Gastroenterology and Hepatology (Australia), 2015, 30, 719-725.	2.8	25
105	Multi-Copper Ferroxidase–Deficient Mice Have Increased Brain Iron Concentrations and Learning and Memory Deficits. Journal of Nutrition, 2018, 148, 643-649.	2.9	25
106	Cirrhosis in Hemochromatosis: Independent Risk Factors in 368 HFE p.C282Y Homozygotes. Annals of Hepatology, 2018, 17, 871-879.	1.5	25
107	Hepcidin compared with prohepcidin: an absorbing story. American Journal of Clinical Nutrition, 2009, 89, 475-476.	4.7	24
108	Hepcidin Regulation in Wildâ€Type and Hfe Knockout Mice in Response to Alcohol Consumption: Evidence for an Alcoholâ€Induced Hypoxic Response. Alcoholism: Clinical and Experimental Research, 2009, 33, 1391-1400.	2.4	24

#	Article	IF	CITATIONS
109	Reduced Expression of Ferroportin-1 Mediates Hyporesponsiveness of Suckling Rats to Stimuli That Reduce Iron Absorption. Gastroenterology, 2011, 141, 300-309.	1.3	24
110	Ferroportin Is Essential for Iron Absorption During Suckling,ÂButÂIs Hyporesponsive to the Regulatory HormoneÂHepcidin. Cellular and Molecular Gastroenterology and Hepatology, 2017, 3, 410-421.	4.5	24
111	Role of iron in the pathogenesis of cysteamine-induced duodenal ulceration in rats. American Journal of Physiology - Renal Physiology, 2009, 296, G1277-G1286.	3.4	23
112	Gastrins, iron homeostasis and colorectal cancer. Biochimica Et Biophysica Acta - Molecular Cell Research, 2011, 1813, 889-895.	4.1	23
113	Specific tissue factor delivery using a tumor-homing peptide for inducing tumor infarction. Biochemical Pharmacology, 2018, 156, 501-510.	4.4	23
114	Biallelic HEPHL1 variants impair ferroxidase activity and cause an abnormal hair phenotype. PLoS Genetics, 2019, 15, e1008143.	3.5	23
115	Improved purification of the human placental transferrin receptor and a novel immunoradiometric assay for receptor protein. Biochimica Et Biophysica Acta - General Subjects, 1986, 884, 225-233.	2.4	22
116	Ceruloplasmin and hephaestin jointly protect the exocrine pancreas against oxidative damage by facilitating iron efflux. Redox Biology, 2018, 17, 432-439.	9.0	22
117	Ironing Out Disease: Inherited Disorders of Iron Homeostasis. IUBMB Life, 2001, 51, 11-17.	3.4	21
118	DHPLC mutation analysis ofJagged1 (JAG1) reveals six novel mutations in Australian alagille syndrome patients. Human Mutation, 2002, 20, 481-481.	2.5	21
119	Recent advances in intestinal iron transport. Current Gastroenterology Reports, 2005, 7, 365-372.	2.5	21
120	Sustained expression of heme oxygenase-1 alters iron homeostasis in nonerythroid cells. Free Radical Biology and Medicine, 2012, 53, 366-374.	2.9	21
121	Correlation of serum hepcidin levels with disease progression in hepatitis B virus-related disease assessed by nanopore film based assay. Scientific Reports, 2016, 6, 34252.	3.3	21
122	Iron supplementation has minor effects on gut microbiota composition in overweight and obese women in early pregnancy. British Journal of Nutrition, 2018, 120, 283-289.	2.3	20
123	HFE and Non-HFE Hemochromatosis. International Journal of Hematology, 2002, 76, 203-207.	1.6	19
124	The role of duodenal cytochrome b in intestinal iron absorption remains unclear. Blood, 2005, 106, 4413-4414.	1.4	19
125	5-Aza-2′-deoxycytidine Activates Iron Uptake and Heme Biosynthesis by Increasing c-Myc Nuclear Localization and Binding to the E-boxes of Transferrin Receptor 1 (TfR1) and Ferrochelatase (Fech) Genes. Journal of Biological Chemistry, 2011, 286, 37196-37206.	3.4	19
126	SNP selection for genes of iron metabolism in a study of genetic modifiers of hemochromatosis. BMC Medical Genetics, 2008, 9, 18.	2.1	18

#	Article	IF	CITATIONS
127	High Dietary Iron Disrupts Iron Homeostasis and Induces Amyloid-Î ² and Phospho-Ï", Expression in the Hippocampus of Adult Wild-Type and APP/PS1 Transgenic Mice. Journal of Nutrition, 2019, 149, 2247-2254.	2.9	18
128	Ironing Out Disease: Inherited Disorders of Iron Homeostasis. IUBMB Life, 2001, 51, 11-17.	3.4	17
129	Characterization of Putative Erythroid Regulators of Hepcidin in Mouse Models of Anemia. PLoS ONE, 2017, 12, e0171054.	2.5	17
130	The biology of mammalian multi-copper ferroxidases. BioMetals, 2023, 36, 263-281.	4.1	17
131	Transferrin receptors in hemochromatosis. Hepatology, 1987, 7, 967-969.	7.3	16
132	Intestinal iron absorption during suckling in mammals. BioMetals, 2011, 24, 567-574.	4.1	16
133	In silico QTL mapping of basal liver iron levels in inbred mouse strains. Physiological Genomics, 2011, 43, 136-147.	2.3	16
134	Nanopore film based enrichment and quantification of low abundance hepcidin from human bodily fluids. Nanomedicine: Nanotechnology, Biology, and Medicine, 2014, 10, e879-e888.	3.3	16
135	Interrelationships between circulating gastrin and iron status in mice and humans. American Journal of Physiology - Renal Physiology, 2008, 295, G855-G861.	3.4	14
136	Molecular Mechanisms of Intestinal Iron Transport. , 2012, , 1921-1947.		14
137	A comparison of selfâ€reported and recordâ€linked blood donation history in an Australian cohort. Transfusion, 2011, 51, 2189-2198.	1.6	13
138	GNPAT p.D519G is independently associated with markedly increased iron stores in HFE p.C282Y homozygotes. Blood Cells, Molecules, and Diseases, 2017, 63, 15-20.	1.4	13
139	Of metals, mice, and men: what animal models can teach us about body iron loading. Journal of Clinical Investigation, 2000, 105, 1185-1186.	8.2	13
140	Increased susceptibility of cystic fibrosis airway epithelial cells to ferroptosis. Biological Research, 2021, 54, 38.	3.4	13
141	Gastrin-Deficient Mice Have Disturbed Hematopoiesis in Response to Iron Deficiency. Endocrinology, 2011, 152, 3062-3073.	2.8	12
142	A Chinese family carrying novel mutations in <scp><i>SEC23B</i></scp> and <scp><i>HFE2</i></scp> , the genes responsible for congenital dyserythropoietic anaemia <scp>II</scp> (<scp>CDA II</scp>) and primary iron overload, respectively. British Journal of Haematology, 2012, 158, 143-145.	2.5	12
143	Intestinal hephaestin potentiates iron absorption in weanling, adult, and pregnant mice under physiological conditions. Blood Advances, 2017, 1, 1335-1346.	5.2	12
144	Dietary iron absorption during early postnatal life. BioMetals, 2019, 32, 385-393.	4.1	12

#	Article	IF	CITATIONS
145	Circulating gastrin is increased in hemochromatosis. FEBS Letters, 2006, 580, 6195-6198.	2.8	11
146	Intestinal Iron Transport and its Regulation. Hematology, 2001, 6, 193-203.	1.5	9
147	Large scale expression and purification of secreted mouse hephaestin. PLoS ONE, 2017, 12, e0184366.	2.5	9
148	Supplementation with Sucrosomial \hat{A}^{\circledast} iron leads to favourable changes in the intestinal microbiome when compared to ferrous sulfate in mice. BioMetals, 2022, 35, 27-38.	4.1	9
149	Haemochromatosis and control of intestinal iron absor ption. Lancet, The, 1999, 353, 2089-2090.	13.7	8
150	Cystic fibrosis: ironing out the problem of infection?. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2008, 295, L23-L24.	2.9	8
151	Mechanisms and Regulation of Intestinal Iron Transport. , 2018, , 1451-1483.		8
152	Regulation of Intestinal Iron Transport. , 2002, , .		8
153	A Novel Ferritin-Core Analog Is a Safe and Effective Alternative to Oral Ferrous Iron for Treating Iron Deficiency during Pregnancy in Mice. Journal of Nutrition, 2022, 152, 714-722.	2.9	8
154	Iron accumulation is associated with periodontal destruction in a mouse model of HFEâ€related haemochromatosis. Journal of Periodontal Research, 2022, 57, 294-304.	2.7	8
155	Age-dependent expression of hephaestin in the brain of ceruloplasmin-deficient mice. Journal of Trace Elements in Medicine and Biology, 2009, 23, 290-299.	3.0	7
156	Mice overexpressing hepcidin suggest ferroportin does not play a major role in Mn homeostasis. Metallomics, 2019, 11, 959-967.	2.4	7
157	The Placental Ferroxidase Zyklopen Is Not Essential for Iron Transport to the Fetus in Mice. Journal of Nutrition, 2021, 151, 2541-2550.	2.9	7
158	A Corn Oil–Based Diet Protects Against Combined Ethanol and Ironâ€Induced Liver Injury in a Mouse Model of Hemochromatosis. Alcoholism: Clinical and Experimental Research, 2013, 37, 1619-1631.	2.4	6
159	Food deprivation increases hepatic hepcidin expression and can overcome the effect of Hfe deletion in male mice. FASEB Journal, 2018, 32, 6079-6088.	0.5	6
160	Mutations in the HFE gene can be associated with increased lung disease severity in cystic fibrosis. Gene, 2019, 683, 12-17.	2.2	6
161	Hepcidin independent iron recycling in a mouse model of βâ€ŧhalassaemia intermedia. British Journal of Haematology, 2016, 175, 308-317.	2.5	5
162	Reply. Hepatology, 2015, 62, 1918-1919.	7.3	4

#	Article	IF	CITATIONS
163	Utility and limitations of Hepascore and transient elastography to detect advanced hepatic fibrosis in HFE hemochromatosis. Scientific Reports, 2021, 11, 14654.	3.3	4
164	Exome Sequencing Identifies Genes and Variant Alleles Associated With Severity Of Iron Overload In Hemochromatosis HFE C282Y Homozygotes. Blood, 2013, 122, 179-179.	1.4	4
165	Ferritin metabolism in hemochromatosis. , 2000, , 145-156.		3
166	How much iron is too much?. Expert Review of Gastroenterology and Hepatology, 2008, 2, 287-290.	3.0	3
167	Things that go BMP in the liver: Bone morphogenetic protein 6 and the control of body iron homeostasis. Hepatology, 2009, 50, 316-319.	7.3	3
168	Iron Biofortification: Who Gives a Bean?. Journal of Nutrition, 2020, 150, 2841-2842.	2.9	3
169	Iron Wars — The Host Strikes Back. New England Journal of Medicine, 2018, 379, 2078-2080.	27.0	2
170	Calcitonin increases hepatic hepcidin expression through the BMP6 of kidney in mice. Journal of Trace Elements in Medicine and Biology, 2021, 68, 126796.	3.0	2
171	Exome Sequencing Identifies a GNPAT Variant Associated with Severe Iron Overload in HFE C282Y Homozygous Men with Extreme Phenotypes; Possible Role in Regulation of Hepcidin Expression. Blood, 2014, 124, 745-745.	1.4	2
172	Investigating the Links between Lower Iron Status in Pregnancy and Respiratory Disease in Offspring Using Murine Models. Nutrients, 2021, 13, 4461.	4.1	2
173	Subcellular localization and differentiation-associated expression of hephaestin: A protein required for intestinal iron absorption. Gastroenterology, 2000, 118, A661.	1.3	1
174	Reply. Hepatology, 2016, 63, 2056-2057.	7.3	1
175	Is there a better way to set population iron recommendations?. American Journal of Clinical Nutrition, 2017, 105, 1255-1256.	4.7	1
176	Reply:. Hepatology, 2017, 65, 1072-1073.	7.3	1
177	Ironing Out the Effects of Overweight and Obesity on Hepcidin Production during Pregnancy. Journal of Nutrition, 2021, 151, 2087-2088.	2.9	1
178	Genetic Disorders of Trace Element Metabolism. , 2000, , 201-226.		1
179	The Cellular Physiology of Iron. , 2009, , 3-29.		1
180	Distribution and regulation of iron transport genes in the rat gastrointestinal tract: Implications for the control of iron absorption. Gastroenterology, 2000, 118, A69.	1.3	0

#	Article	IF	CITATIONS
181	Cellâ€specific location of Hfe: It is the 'cyte that matters. Hepatology, 2008, 48, 336-338.	7.3	0
182	Reply. Hepatology, 2016, 63, 2058-2060.	7.3	0
183	Iron Homeostasis and the Pathophysiology and Management of Iron Deficiency. , 2016, , 13-22.		Ο
184	Iron; Intestinal Absorption. , 2020, , 301-311.		0
185	GNPAT p.D519G is Independently Associated with Markedly Increased Iron Stores in HFE p.C282Y Homozygotes. Blood, 2016, 128, 3617-3617.	1.4	0
186	Notes on the ant-mimic genus Anatea Berland (Araneae: Theridiidae) and two new species from tropical Australia. Records of the Australian Museum, 2017, 69, 1-13.	0.2	0