
Elizabeth W Bradley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6613544/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The histone H3.3K36M mutation reprograms the epigenome of chondroblastomas. Science, 2016, 352, 1344-1348.	12.6	211
2	Transplanted Senescent Cells Induce an Osteoarthritis-Like Condition in Mice. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2017, 72, glw154.	3.6	163
3	Phosphatidylinositol 3â€kinase coordinately activates the MEK/ERK and AKT/NFκB pathways to maintain osteoclast survival. Journal of Cellular Biochemistry, 2003, 89, 165-179.	2.6	160
4	TGF-β coordinately activates TAK1/MEK/AKT/NFkB and SMAD pathways to promote osteoclast survival. Experimental Cell Research, 2008, 314, 2725-2738.	2.6	156
5	Epigenetic Control of Skeletal Development by the Histone Methyltransferase Ezh2. Journal of Biological Chemistry, 2015, 290, 27604-27617.	3.4	144
6	Histone Deacetylases in Bone Development and Skeletal Disorders. Physiological Reviews, 2015, 95, 1359-1381.	28.8	122
7	WNT5A Regulates Chondrocyte Differentiation through Differential Use of the CaN/NFAT and IKK/NF-ήB Pathways. Molecular Endocrinology, 2010, 24, 1581-1593.	3.7	104
8	Histone Deacetylase 3 Suppression Increases PH Domain and Leucine-rich Repeat Phosphatase (Phlpp)1 Expression in Chondrocytes to Suppress Akt Signaling and Matrix Secretion. Journal of Biological Chemistry, 2013, 288, 9572-9582.	3.4	74
9	Histone deacetylase 3 is required for maintenance of bone mass during aging. Bone, 2013, 52, 296-307.	2.9	66
10	Histone deacetylase 3 supports endochondral bone formation by controlling cytokine signaling and matrix remodeling. Science Signaling, 2016, 9, ra79.	3.6	60
11	Wnt5b regulates mesenchymal cell aggregation and chondrocyte differentiation through the planar cell polarity pathway. Journal of Cellular Physiology, 2011, 226, 1683-1693.	4.1	54
12	Osteoclast Culture and Resorption Assays. Methods in Molecular Biology, 2008, 455, 19-35.	0.9	52
13	Pathway crosstalk between Ras/Raf and PI3K in promotion of Mâ€CSFâ€induced MEK/ERKâ€mediated osteoclast survival. Journal of Cellular Biochemistry, 2008, 104, 1439-1451.	2.6	50
14	Loss of histone methyltransferase Ezh2 stimulates an osteogenic transcriptional program in chondrocytes but does not affect cartilage development. Journal of Biological Chemistry, 2018, 293, 19001-19011.	3.4	50
15	Deletion of the PH-domain and Leucine-rich Repeat Protein Phosphatase 1 (Phlpp1) Increases Fibroblast Growth Factor (Fgf) 18 Expression and Promotes Chondrocyte Proliferation. Journal of Biological Chemistry, 2015, 290, 16272-16280.	3.4	49
16	Hdac-Mediated Control of Endochondral and Intramembranous Ossification. Critical Reviews in Eukaryotic Gene Expression, 2011, 21, 101-113.	0.9	48
17	Phlpp1 facilitates post-traumatic osteoarthritis and is induced by inflammation and promoter demethylation in human osteoarthritis. Osteoarthritis and Cartilage, 2016, 24, 1021-1028.	1.3	44
18	Histone Deacetylase 7 (Hdac7) Suppresses Chondrocyte Proliferation and β-Catenin Activity during Endochondral Ossification. Journal of Biological Chemistry, 2015, 290, 118-126.	3.4	42

ELIZABETH W BRADLEY

#	Article	IF	CITATIONS
19	Runx2 is required for early stages of endochondral bone formation but delays final stages of bone repair in Axin2-deficient mice. Bone, 2014, 66, 277-286.	2.9	41
20	Novel Pro-survival Functions of the Kruppel-like Transcription Factor Egr2 in Promotion of Macrophage Colony-stimulating Factor-mediated Osteoclast Survival Downstream of the MEK/ERK Pathway. Journal of Biological Chemistry, 2008, 283, 8055-8064.	3.4	40
21	Native, not nitrated, cytochromecand mitochondria-derived hydrogen peroxide drive osteoclast apoptosis. American Journal of Physiology - Cell Physiology, 2005, 288, C156-C168.	4.6	36
22	Transforming Growth Factor-β Coordinately Induces Suppressor of Cytokine Signaling 3 and Leukemia Inhibitory Factor to Suppress Osteoclast Apoptosis. Endocrinology, 2010, 151, 1713-1722.	2.8	35
23	Identification of differentially methylated regions in new genes associated with knee osteoarthritis. Gene, 2016, 576, 312-318.	2.2	28
24	Histone Deacetylase 3 Deletion in Mesenchymal Progenitor Cells Hinders Long Bone Development. Journal of Bone and Mineral Research, 2017, 32, 2453-2465.	2.8	27
25	Phlpp1 is associated with human intervertebral disc degeneration and its deficiency promotes healing after needle puncture injury in mice. Cell Death and Disease, 2019, 10, 754.	6.3	22
26	PAK1 is a novel MEKâ€independent raf target controlling expression of the IAP survivin in Mâ€CSFâ€mediated osteoclast survival. Journal of Cellular Physiology, 2008, 217, 752-758.	4.1	19
27	Phlpp inhibitors block pain and cartilage degradation associated with osteoarthritis. Journal of Orthopaedic Research, 2018, 36, 1487-1497.	2.3	19
28	Deficiency in the phosphatase PHLPP1 suppresses osteoclast-mediated bone resorption and enhances bone formation in mice. Journal of Biological Chemistry, 2019, 294, 11772-11784.	3.4	17
29	Histone deacetylase 3 suppresses Erk phosphorylation and matrix metalloproteinase (Mmp)-13 activity in chondrocytes. Connective Tissue Research, 2017, 58, 27-36.	2.3	12
30	Loss of Hdac3 in osteoprogenitors increases bone expression of osteoprotegerin, improving systemic insulin sensitivity. Journal of Cellular Physiology, 2018, 233, 2671-2680.	4.1	11
31	Serine/threonine phosphatases in osteoclastogenesis and bone resorption. Gene, 2021, 771, 145362.	2.2	11
32	Hdac3 regulates bone modeling by suppressing osteoclast responsiveness to RANKL. Journal of Biological Chemistry, 2020, 295, 17713-17723.	3.4	10
33	Hdac3 deletion in myeloid progenitor cells enhances bone healing in females and limits osteoclast fusion via Pmepa1. Scientific Reports, 2020, 10, 21804.	3.3	10
34	DNA methylation and FoxO3a regulate PHLPP1 expression in chondrocytes. Journal of Cellular Biochemistry, 2018, 119, 7470-7478.	2.6	6
35	Pleckstrin homology (PH) domain and Leucine Rich Repeat Phosphatase 1 (Phlpp1) Suppresses Parathyroid Hormone Receptor 1 (Pth1r) Expression and Signaling During Bone Growth. Journal of Bone and Mineral Research, 2020, 36, 986-999.	2.8	6
36	Pain and Activity Measurements. Methods in Molecular Biology, 2021, 2221, 291-299.	0.9	4

#	Article	IF	CITATIONS
37	Phlpp1 is induced by estrogen in osteoclasts and its loss in Ctsk-expressing cells does not protect against ovariectomy-induced bone loss. PLoS ONE, 2021, 16, e0251732.	2.5	3
38	Myeloid Lineage Ablation of Phlpp1 Regulates M-CSF Signaling and Tempers Bone Resorption in Female Mice. International Journal of Molecular Sciences, 2021, 22, 9702.	4.1	3
39	GIRK3 deletion facilitates kappa opioid signaling in chondrocytes, delays vascularization and promotes bone lengthening in mice. Bone, 2022, 159, 116391.	2.9	2