
Mar LÃ³pez GonzÃ;lez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6613110/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hybrid materials: Magnetite–Polyethylenimine–Montmorillonite, as magnetic adsorbents for Cr(VI) water treatment. Journal of Colloid and Interface Science, 2012, 385, 24-33.	9.4	141
2	Effect of zeolitic imidazolate frameworks on the gas transport performance of ZIF8-poly(1,4-phenylene) Tj ETQq0	0.0.rgBT 8.2	/Overlock 10
3	CO ₂ Transport in Polysulfone Membranes Containing Zeolitic Imidazolate Frameworks As Determined by Permeation and PFG NMR Techniques. Macromolecules, 2010, 43, 316-325.	4.8	93

4	Synthesis and Gas Transport Properties of New High Glass Transition Temperature Ring-Opened Polynorbornenes. Macromolecules, 2002, 35, 4677-4684.	4.8	57
5	Gas Transport and Ionic Transport in Membranes Based on Polynorbornenes with Functionalized Imide Side Groups. Macromolecules, 2007, 40, 563-570.	4.8	48
6	Gas Transport in Polymers Prepared via Metathesis Copolymerization ofexo-N-Phenyl-7-oxanorbornene-5,6-dicarboximide and Norbornene. Macromolecules, 2003, 36, 8483-8488.	4.8	44
7	Study of optimization of the synthesis and properties of biocomposite films based on grafted chitosan. Journal of Food Engineering, 2012, 109, 752-761.	5.2	39
8	Gas Sorption in New Fluorine Containing Polynorbornenes with Imide Side Chain Groups. Macromolecules, 2005, 38, 2696-2703.	4.8	35
9	Gas transport in membranes based on polynorbornenes with fluorinated dicarboximide side moieties. Journal of Membrane Science, 2010, 361, 78-88.	8.2	33
10	Gas transport in fluorothiophenyl modified PVC membranes. Journal of Membrane Science, 2010, 362, 164-171.	8.2	31
11	Simulation and Experimental Studies on Proton Diffusion in Polyelectrolytes Based on Sulfonated Naphthalenic Copolyimides. Macromolecules, 2009, 42, 6572-6580.	4.8	30
12	Synthesis and ionic transport of sulfonated ring-opened polynorbornene based copolymers. Polymer, 2011, 52, 4208-4220.	3.8	26
13	Hybrid Biocomposites Based on Poly(Lactic Acid) and Silica Aerogel for Food Packaging Applications. Materials, 2020, 13, 4910.	2.9	25
14	Permselectivity and Conductivity of Membranes Based on Sulfonated Naphthalenic Copolyimides. Journal of Physical Chemistry B, 2007, 111, 13694-13702.	2.6	24
15	Effect of porous organic polymers in gas separation properties of polycarbonate based mixed matrix membranes. Journal of Membrane Science, 2021, 619, 118795.	8.2	24
16	Experimental and simulation studies on the transport of gaseous diatomic molecules in polycarbonate membranes. Journal of Chemical Physics, 2001, 115, 6728-6736.	3.0	21
17	Synthesis and gas transport properties of new polynorbornene dicarboximides bearing trifluoromethyl isomer moieties. High Performance Polymers, 2016, 28, 1246-1262.	1.8	19
	Granhene and Polyethylene: A Strong Combination Towards Multifunctional Nanocomposites		

18Graphene and Polyethylene: A Strong Combination Towards Multifunctional Nanocomposites.4.517Polymers, 2020, 12, 2094.17

Mar LÃ³pez GonzÃilez

#	Article	IF	CITATIONS
19	Experimental and Simulation Studies on the Transport of Argon in Polycarbonate Membranes. Macromolecules, 2001, 34, 4999-5004.	4.8	16
20	Gas transport in surface grafted polypropylene films with poly(acrylic acid) chains. Journal of Polymer Science, Part B: Polymer Physics, 2007, 45, 2421-2431.	2.1	16
21	The Development of Proton Conducting Polymer Membranes for Fuel Cells Using Sulfonated Carbon Nanofibres. Macromolecular Rapid Communications, 2008, 29, 234-238.	3.9	16
22	Molecular Basis of Carbon Dioxide Transport in Polycarbonate Membranes. Journal of Physical Chemistry B, 2008, 112, 4253-4260.	2.6	16
23	Simulations of gas transport in membranes based on polynorbornenes functionalized with substituted imide side groups. Journal of Membrane Science, 2008, 310, 474-483.	8.2	14
24	Gas transport in surface-modified low-density polyethylene films with acrylic acid as a grafting agent. Journal of Polymer Science, Part B: Polymer Physics, 2006, 44, 2828-2840.	2.1	12
25	Effects of Tricresylphosphate on Gas Transport Coefficients in Matrimid and 6FDA-TMPD Polyimides. Macromolecules, 2011, 44, 3862-3873.	4.8	12
26	Gas Transport Properties of Hydrogenated and Fluorinated Polynorbornene Dicarboximides. Macromolecular Chemistry and Physics, 2013, 214, 2607-2615.	2.2	12
27	Basic studies on gas solubility in natural rubber-cellulose composites. Journal of Polymer Science, Part B: Polymer Physics, 2005, 43, 2131-2140.	2.1	11
28	Electrochemical performance of membranes based on hydrogenated polynorbornenes functionalized with imide side groups containing sulfonated fluorinated moieties. Journal of Membrane Science, 2012, 403-404, 121-128.	8.2	11
29	Influence of the Water Content on the Diffusion Coefficients of Li ⁺ and Water across Naphthalenic Based Copolyimide Cation-Exchange Membranes. Journal of Physical Chemistry B, 2012, 116, 11754-11766.	2.6	10
30	Synthesis and Gas Permeability of Chemically Cross‣inked Polynorbornene Dicarboximides Bearing Fluorinated Moieties. Macromolecular Chemistry and Physics, 2019, 220, 1800481.	2.2	9
31	Impedance Spectroscopy and Performance of Cross-Linked New Naphthalenic Polyimide Acid Membranes. Journal of Physical Chemistry C, 2010, 114, 22773-22782.	3.1	8
32	Transport of helium in polycarbonate membranes. Polymer, 2002, 43, 409-413.	3.8	7
33	Proton diffusion in polyelectrolytes based on hydrogenated polynorbornenes with imide side groups in the repeat unit as determined by NMR and impedance spectroscopies. Journal of Membrane Science, 2011, 380, 199-207.	8.2	7
34	Efficient light harvesting within a C153@Zr-based MOF embedded in a polymeric film: spectral and dynamical characterization. Physical Chemistry Chemical Physics, 2017, 19, 17544-17552.	2.8	7
35	Gas sorption in semicrystalline rubbery polymers revisited. Journal of Applied Polymer Science, 2007, 105, 903-907.	2.6	5
36	Influence of local chain dynamics on diffusion of gases in polymers as determined by pulsed field gradient NMR. Journal of Polymer Science, Part B: Polymer Physics, 2010, 48, 231-235.	2.1	3

3

#	Article	IF	CITATIONS
37	Ion-Exchange Membranes Based on Polynorbornenes with Fluorinated Imide Side Chain Groups. International Journal of Chemical Engineering, 2012, 2012, 1-11.	2.4	3
38	Mixed Matrix Membranes Containing a Biphenyl-Based Knitting Aryl Polymer and Gas Separation Performance. Membranes, 2021, 11, 914.	3.0	2
39	Colored Surfaces Made of Synthetic Eumelanin. Nanomaterials, 2021, 11, 2320.	4.1	Ο