
Jin-Chuan Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6612923/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Strain mapping in interband cascade lasers. AIP Advances, 2022, 12, 015027.	1.3	1
2	Quantum cascade detectors with enhanced responsivity using coupled double-well structures. Applied Physics Express, 2022, 15, 032005.	2.4	6
3	Continuous-Wave Operation of Microcavity Quantum Cascade Lasers in Whispering-Gallery Mode. ACS Photonics, 2022, 9, 1172-1179.	6.6	7
4	Stable single-mode 20-channel uniform buried grating DFB QCL array emitting at ~ 8.3Âμm. Optical and Quantum Electronics, 2022, 54, 1.	1 3.3	1
5	High-Power Terahertz Quantum Cascade Lasers Based on High-Al-Composition Four Quantum Wells. IEEE Photonics Technology Letters, 2022, 34, 671-674.	2.5	2
6	High-speed operation of single-mode tunable quantum cascade laser based on ultra-short resonant cavity. AIP Advances, 2021, 11, .	1.3	6
7	Broad gain, continuous-wave operation of InP-based quantum cascade laser at λ â^1⁄4 11.8 Î1⁄4m*. Chinese Physics B, 2021, 30, 124202.	1.4	5
8	Roomâ€ŧemperature quantum cascade laser packaged module at â^¼8Âμm designed for highâ€frequency response. Electronics Letters, 2021, 57, 665-667.	1.0	7
9	High responsivity quantum cascade detectors with bound-to-miniband diagonal transition. Applied Physics Letters, 2021, 119, .	3.3	9
10	Spectral beam combining of discrete quantum cascade lasers. Optical and Quantum Electronics, 2021, 53, 1.	3.3	5
11	Quantum cascade laser frequency comb at 5 THz. , 2021, , .		Ο
12	Inversion Boundary Annihilation in GaAs Monolithically Grown on Onâ€Axis Silicon (001). Advanced Optical Materials, 2020, 8, 2000970.	7.3	22
13	Domino Effect of Thickness Fluctuation on Subband Structure and Electron Transport within Semiconductor Cascade Structures. ACS Applied Materials & Interfaces, 2020, 12, 41950-41959.	8.0	7
14	High Power Tapered Sampling Grating Distributed Feedback Quantum Cascade Lasers. IEEE Photonics Technology Letters, 2020, 32, 305-308.	2.5	5
15	InP-Based Surface-Emitting Distributed Feedback Lasers Operating at 2004 nm. IEEE Photonics Technology Letters, 2019, 31, 1701-1704.	2.5	3
16	Demonstration of High-Power and Stable Single-Mode in a Quantum Cascade Laser Using Buried Sampled Grating. Nanoscale Research Letters, 2019, 14, 123.	5.7	6
17	Sampled grating terahertz quantum cascade lasers. Applied Physics Letters, 2019, 114, 141105.	3.3	13

18 THz Quantum Cascade Lasers with Optimized Beam Divergence. , 2019, , .

JIN-CHUAN ZHANG

#	Article	IF	CITATIONS
19	High performance continuous-wave InP-based 2.1 μm superluminescent diode with InGaAsSb quantum well. , 2019, , .		0
20	Anomalous Mode Transitions in High Power Distributed Bragg Reflector Quantum Cascade Lasers. Nanoscale Research Letters, 2019, 14, 331.	5.7	2
21	Near-infrared and mid-infrared semiconductor broadband light emitters. Light: Science and Applications, 2018, 7, 17170-17170.	16.6	62
22	Room temperature operation of InAsSb quantum dashes laser near 1.8 μm based on InP (001) substrate. AIP Advances, 2018, 8, 125114.	1.3	0
23	Tapered Quantum Cascade Laser Arrays Integrated with Talbot Cavities. Nanoscale Research Letters, 2018, 13, 205.	5.7	4
24	Fast Swept-Wavelength, Low Threshold-Current, Continuous-Wave External Cavity Quantum Cascade Laser. Nanoscale Research Letters, 2018, 13, 341.	5.7	2
25	High Power Quantum Cascade Laser at λ 5.1 <i>μ</i> m Based on Low Strain Compensation Design. Journal of Nanoscience and Nanotechnology, 2018, 18, 7508-7511.	0.9	0
26	High-performance THz Quantum Cascade Lasers in Single-mode. , 2018, , .		0
27	High Spectral-Purity Quantum Cascade Laser for Isotopic Analysis of Carbon Dioxide. Journal of Nanoscience and Nanotechnology, 2018, 18, 7489-7492.	0.9	0
28	Improved performance of InP-based 2.1 μm InGaAsSb quantum well lasers using Sb as a surfactant. Applied Physics Letters, 2018, 113, 251101.	3.3	6
29	High performance continuous-wave InP-based 2.1 <i>μ</i> m superluminescent diode with InGaAsSb quantum well and cavity structure suppression. Applied Physics Letters, 2018, 113, .	3.3	7
30	High Power Compact Quantum Cascade Superluminescent Emitters with High Temperature Stability and Optical Beam Quality. Journal of Nanoscience and Nanotechnology, 2018, 18, 7430-7434.	0.9	1
31	Stable Single-Mode Operation of Distributed Feedback Quantum Cascade Laser by Optimized Reflectivity Facet Coatings. Nanoscale Research Letters, 2018, 13, 37.	5.7	7
32	Influences of Ridge-Waveguide Shape and Width on Performances of InP-Based Coupled Ridge-Waveguide Laser Arrays. IEEE Journal of Quantum Electronics, 2018, 54, 1-4.	1.9	1
33	Improvement of Buried Grating DFB Quantum Cascade Lasers by Small-Angle Tapered Structure. IEEE Photonics Technology Letters, 2017, 29, 783-785.	2.5	5
34	Coupled Ridge Waveguide Substrate-Emitting DFB Quantum Cascade Laser Arrays. IEEE Photonics Technology Letters, 2017, 29, 213-216.	2.5	4
35	High Efficiency, Low Power-Consumption DFB Quantum Cascade Lasers Without Lateral Regrowth. Nanoscale Research Letters, 2017, 12, 281.	5.7	7
36	Phase-locked array of quantum cascade lasers with an intracavity spatial filter. Applied Physics Letters, 2017, 111, .	3.3	12

JIN-CHUAN ZHANG

#	Article	IF	CITATIONS
37	Response to "Comment on â€~Phase-locked array of quantum cascade lasers with an intracavity spatial filter'―[Appl. Phys. Lett. 111, 256101 (2017)]. Applied Physics Letters, 2017, 111, 256102.	3.3	Ο
38	Single-Mode Quantum Cascade Laser at \$5.1~mu ext{m}\$ With Slotted Refractive Index Modulation. IEEE Photonics Technology Letters, 2017, 29, 1959-1962.	2.5	6
39	Low Power Consumption Substrate-Emitting DFB Quantum Cascade Lasers. Nanoscale Research Letters, 2017, 12, 517.	5.7	2
40	High Power Substrate-Emitting Quantum Cascade Laser With a Symmetric Mode. IEEE Photonics Technology Letters, 2017, 29, 1994-1997.	2.5	1
41	Highâ€speed quantum cascade laser at room temperature. Electronics Letters, 2016, 52, 548-549.	1.0	10
42	Highâ€performance operation of distributed feedback terahertz quantum cascade lasers. Electronics Letters, 2016, 52, 945-947.	1.0	7
43	High-speed, room-temperature quantum cascade detectors at 4.3 μm. AIP Advances, 2016, 6, .	1.3	11
44	High-power phase-locked quantum cascade laser array emitting at λ â^1⁄4 4.6 Î1⁄4m. AIP Advances, 2016, 6, .	1.3	10
45	10-W pulsed operation of substrate emitting photonic-crystal quantum cascade laser with very small divergence. Nanoscale Research Letters, 2015, 10, 177.	5.7	6
46	High-Power Single-Mode Tapered Terahertz Quantum Cascade Lasers. IEEE Photonics Technology Letters, 2015, 27, 1492-1494.	2.5	6
47	High power coupled ridge waveguide quantum cascade laser arrays. , 2015, , .		Ο
48	High power THz quantum cascade laser at ∼ 3.1 THz. , 2015, , .		1
49	Coupled ridge waveguide distributed feedback quantum cascade laser arrays. Applied Physics Letters, 2015, 106, .	3.3	20
50	Development of Low Power Consumption DFB Quantum Cascade Lasers. IEEE Photonics Technology Letters, 2015, 27, 2335-2338.	2.5	5
51	Broad area single mode operation of quantum cascade lasers by integrating porous waveguide and distributed feedback grating. Optical and Quantum Electronics, 2015, 47, 515-521.	3.3	1
52	Directional collimation of substrate emitting quantum cascade laser by nanopores arrays. Applied Physics Letters, 2014, 104, 052109.	3.3	5
53	Index-coupled multi-wavelength distributed feedback quantum cascade lasers based on sampled gratings. Optical and Quantum Electronics, 2014, 46, 1539-1546.	3.3	2
54	High-Power Distributed Feedback Terahertz Quantum Cascade Lasers. IEEE Electron Device Letters, 2013, 34, 1412-1414.	3.9	8

JIN-CHUAN ZHANG

#	Article	lF	CITATIONS
55	Tunable Distributed Feedback Quantum Cascade Lasers by a Sampled Bragg Grating. IEEE Photonics Technology Letters, 2013, 25, 1039-1042.	2.5	7
56	Micro-Raman study on chirped InGaAs-InAlAs superlattices. Physica Status Solidi (A) Applications and Materials Science, 2013, 210, 2364-2368.	1.8	6
57	Improved performance of quantum cascade laser with porous waveguide structure. Journal of Applied Physics, 2012, 112, .	2.5	7
58	High-Power Surface-Emitting Surface-Plasmon-Enhanced Distributed Feedback Quantum Cascade Lasers. IEEE Photonics Technology Letters, 2012, 24, 972-974.	2.5	10