

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6612355/publications.pdf Version: 2024-02-01

	5782	8034
25,409	84	154
citations	h-index	g-index
253	253	30209
docs citations	times ranked	citing authors
	25,409 citations 253 docs citations	25,40984citationsh-index253253docs citationstimes ranked

LIE ZENC

#	Article	IF	CITATIONS
1	Photo―and Electrocatalytic CO ₂ Reduction Based on Stable Leadâ€Free Perovskite Cs ₂ PdBr ₆ . Energy and Environmental Materials, 2023, 6, .	7.3	4
2	Photocatalytic Conversion of Methane: Recent Advancements and Prospects. Angewandte Chemie - International Edition, 2022, 61, .	7.2	111
3	Photocatalytic Conversion of Methane: Recent Advancements and Prospects. Angewandte Chemie, 2022, 134, e202108069.	1.6	46
4	A novel 2D Co3(HADQ)2 metal-organic framework as a highly active and stable electrocatalyst for acidic oxygen reduction. Chemical Engineering Journal, 2022, 430, 132642.	6.6	43
5	Molecular Stabilization of Subâ€Nanometer Cu Clusters for Selective CO ₂ Electromethanation. ChemSusChem, 2022, 15, .	3.6	11
6	Single atoms supported on metal oxides for energy catalysis. Journal of Materials Chemistry A, 2022, 10, 5717-5742.	5.2	29
7	Nanoconfinement Engineering over Hollow Multiâ€5hell Structured Copper towards Efficient Electrocatalytical Câ"C coupling. Angewandte Chemie - International Edition, 2022, 61, .	7.2	57
8	Nanoconfinement Engineering over Hollow Multiâ€Shell Structured Copper towards Efficient Electrocatalytical Câ"C coupling. Angewandte Chemie, 2022, 134, e202113498.	1.6	4
9	Tuning the Interaction between Ruthenium Single Atoms and the Second Coordination Sphere for Efficient Nitrogen Photofixation. Advanced Functional Materials, 2022, 32, .	7.8	22
10	Promoting N2 electroreduction into NH3 over porous carbon by introducing oxygen-containing groups. Chemical Engineering Journal, 2022, 434, 134636.	6.6	9
11	Facet-dependent electrooxidation of propylene into propylene oxide over Ag3PO4 crystals. Nature Communications, 2022, 13, 932.	5.8	38
12	Adjusting Local CO Confinement in Porous-Shell Ag@Cu Catalysts for Enhancing C–C Coupling toward CO ₂ Eletroreduction. Nano Letters, 2022, 22, 2554-2560.	4.5	43
13	Tuning the Interaction between Ruthenium Single Atoms and the Second Coordination Sphere for Efficient Nitrogen Photofixation (Adv. Funct. Mater. 12/2022). Advanced Functional Materials, 2022, 32, .	7.8	0
14	Synergy between Palladium Single Atoms and Nanoparticles via Hydrogen Spillover for Enhancing CO ₂ Photoreduction to CH ₄ . Advanced Materials, 2022, 34, e2200057.	11.1	162
15	Low-Temperature C–H Bond Activation: Ethylbenzene-to-Styrene Conversion on Rutile TiO ₂ (110). Journal of Physical Chemistry C, 2022, 126, 6231-6240.	1.5	2
16	Atomically Dispersed Platinum in Surface and Subsurface Sites on MgO Have Contrasting Catalytic Properties for CO Oxidation. Journal of Physical Chemistry Letters, 2022, 13, 3896-3903.	2.1	7
17	Understanding the Effect of *CO Coverage on C–C Coupling toward CO ₂ Electroreduction. Nano Letters, 2022, 22, 3801-3808.	4.5	44
18	Electrodeposited highly-oriented bismuth microparticles for efficient CO2 electroreduction into formate. Nano Research, 2022, 15, 10078-10083.	5.8	19

#	Article	IF	CITATIONS
19	Tuning the Electronic and Steric Interaction at the Atomic Interface for Enhanced Oxygen Evolution. Journal of the American Chemical Society, 2022, 144, 9271-9279.	6.6	76
20	Selectively anchoring single atoms on specific sites of supports for improved oxygen evolution. Nature Communications, 2022, 13, 2473.	5.8	73
21	Ambient-pressure hydrogenation of CO2 into long-chain olefins. Nature Communications, 2022, 13, 2396.	5.8	49
22	Upcycling CO2 into energy-rich long-chain compounds via electrochemical and metabolic engineering. Nature Catalysis, 2022, 5, 388-396.	16.1	153
23	Progresses on carbon dioxide electroreduction into methane. Chinese Journal of Catalysis, 2022, 43, 1634-1641.	6.9	13
24	Highly active and thermostable submonolayer La(NiCo)OΔ catalyst stabilized by a perovskite LaCrO3 support. Communications Chemistry, 2022, 5, .	2.0	4
25	Heterogeneous Catalysts toward CO ₂ Hydrogenation for Sustainable Carbon Cycle. Accounts of Materials Research, 2022, 3, 565-571.	5.9	6
26	Synthesis of Tunable Syngas on Cobaltâ€Based Catalysts towards Carbon Dioxide Reduction. ChemNanoMat, 2021, 7, 2-6.	1.5	6
27	A phosphate-derived bismuth catalyst with abundant grain boundaries for efficient reduction of CO ₂ to HCOOH. Chemical Communications, 2021, 57, 1502-1505.	2.2	32
28	Enhance the activity of multi-carbon products for Cu via P doping towards CO2 reduction. Science China Chemistry, 2021, 64, 1096-1102.	4.2	22
29	Inductive effect as a universal concept to design efficient catalysts for CO ₂ electrochemical reduction: electronegativity difference makes a difference. Journal of Materials Chemistry A, 2021, 9, 4626-4647.	5.2	12
30	Doping regulation in transition metal compounds for electrocatalysis. Chemical Society Reviews, 2021, 50, 9817-9844.	18.7	245
31	Water enables mild oxidation of methane to methanol on gold single-atom catalysts. Nature Communications, 2021, 12, 1218.	5.8	138
32	Symmetry-Breaking Sites for Activating Linear Carbon Dioxide Molecules. Accounts of Chemical Research, 2021, 54, 1454-1464.	7.6	53
33	Glutathionylation-dependent proteasomal degradation of wide-spectrum mutant p53 proteins by engineered zeolitic imidazolate framework-8. Biomaterials, 2021, 271, 120720.	5.7	14
34	Copperâ€Based Plasmonic Catalysis: Recent Advances and Future Perspectives. Advanced Materials, 2021, 33, e2008145.	11.1	131
35	<i>In-Situ</i> Generated High-Valent Iron Single-Atom Catalyst for Efficient Oxygen Evolution. Nano Letters, 2021, 21, 4795-4801.	4.5	47
36	Probing the nickel corrosion phenomena in alkaline electrolyte using tender x-ray ambient pressure x-ray photoelectron spectroscopy. Journal Physics D: Applied Physics, 2021, 54, 374001.	1.3	5

#	Article	IF	CITATIONS
37	Bias-Adaptable CO ₂ -to-CO Conversion via Tuning the Binding of Competing Intermediates. Nano Letters, 2021, 21, 8924-8932.	4.5	13
38	Electronic Tuning of SnS ₂ Nanosheets by Hydrogen Incorporation for Efficient CO ₂ Electroreduction. Nano Letters, 2021, 21, 7789-7795.	4.5	35
39	Co-based molecular catalysts for efficient CO2 reduction via regulating spin states. Applied Catalysis B: Environmental, 2021, 290, 120067.	10.8	35
40	Copper-catalysed exclusive CO2 to pure formic acid conversion via single-atom alloying. Nature Nanotechnology, 2021, 16, 1386-1393.	15.6	282
41	Pd–Pt Tesseracts for the Oxygen Reduction Reaction. Journal of the American Chemical Society, 2021, 143, 496-503.	6.6	100
42	A Theory-Guided X-ray Absorption Spectroscopy Approach for Identifying Active Sites in Atomically Dispersed Transition-Metal Catalysts. Journal of the American Chemical Society, 2021, 143, 20144-20156.	6.6	28
43	Oscillation of Work Function during Reducible Metal Oxide Catalysis and Correlation with the Activity Property. ChemCatChem, 2020, 12, 85-89.	1.8	3
44	Atomic-level insights into strain effect on p-nitrophenol reduction via Au@Pd core–shell nanocubes as an ideal platform. Journal of Catalysis, 2020, 381, 427-433.	3.1	30
45	Enhanced N ₂ Electroreduction over LaCoO ₃ by Introducing Oxygen Vacancies. ACS Catalysis, 2020, 10, 1077-1085.	5.5	98
46	Coordinate activation in heterogeneous carbon dioxide reduction on Co-based molecular catalysts. Applied Catalysis B: Environmental, 2020, 268, 118452.	10.8	35
47	Probing the surface chemistry for reverse water gas shift reaction on Pt(1 1 1) using ambient pressure X-ray photoelectron spectroscopy. Journal of Catalysis, 2020, 391, 123-131.	3.1	11
48	Tuning the coordination number of Fe single atoms for the efficient reduction of CO ₂ . Green Chemistry, 2020, 22, 7529-7536.	4.6	49
49	<i>In-Situ</i> Surface Reconstruction of InN Nanosheets for Efficient CO ₂ Electroreduction into Formate. Nano Letters, 2020, 20, 8229-8235.	4.5	55
50	Frontispiece: Surface Iron Species in Palladium–Iron Intermetallic Nanocrystals that Promote and Stabilize CO ₂ Methanation. Angewandte Chemie - International Edition, 2020, 59, .	7.2	0
51	Molecular Modification of Single Cobalt Sites Boosts the Catalytic Activity of CO 2 Electroreduction into CO. ChemPhysChem, 2020, 21, 2051-2055.	1.0	8
52	Boost Selectivity of HCOO ^{â^'} Using Anchored Bi Single Atoms towards CO ₂ Reduction. ChemSusChem, 2020, 13, 6307-6311.	3.6	35
53	Single Atoms of Iron on MoS ₂ Nanosheets for N ₂ Electroreduction into Ammonia. Angewandte Chemie, 2020, 132, 20591-20596.	1.6	17
54	Single Atoms of Iron on MoS ₂ Nanosheets for N ₂ Electroreduction into Ammonia. Angewandte Chemie - International Edition, 2020, 59, 20411-20416.	7.2	136

#	Article	IF	CITATIONS
55	Quantitative insights into non-uniform plasmonic hotspots due to symmetry breaking induced by oblique incidence. Physical Chemistry Chemical Physics, 2020, 22, 19932-19939.	1.3	4
56	Advanced Electrocatalysts with Single-Metal-Atom Active Sites. Chemical Reviews, 2020, 120, 12217-12314.	23.0	563
57	Frontispiz: Surface Iron Species in Palladium–Iron Intermetallic Nanocrystals that Promote and Stabilize CO ₂ Methanation. Angewandte Chemie, 2020, 132, .	1.6	0
58	The midas touch on copper into palladium. Science China Chemistry, 2020, 63, 1740-1741.	4.2	0
59	N ₂ Electroreduction: A Highly Efficient Metalâ€Free Electrocatalyst of Fâ€Doped Porous Carbon toward N ₂ Electroreduction (Adv. Mater. 24/2020). Advanced Materials, 2020, 32, 2070186.	11.1	3
60	Constructing subtle grain boundaries on Au sheets for enhanced CO2 photoreduction. Science China Chemistry, 2020, 63, 1705-1710.	4.2	5
61	Dimensionality Control of Electrocatalytic Activity in Perovskite Nickelates. Nano Letters, 2020, 20, 2837-2842.	4.5	21
62	Surface Iron Species in Palladium–Iron Intermetallic Nanocrystals that Promote and Stabilize CO ₂ Methanation. Angewandte Chemie - International Edition, 2020, 59, 14434-14442.	7.2	49
63	Ultra-Sensitive and Selective Detection of Arsenic(III) via Electroanalysis over Cobalt Single-Atom Catalysts. Analytical Chemistry, 2020, 92, 6128-6135.	3.2	59
64	Electrochemical deposition as a universal route for fabricating single-atom catalysts. Nature Communications, 2020, 11, 1215.	5.8	254
65	Atomic-Level Construction of Tensile-Strained PdFe Alloy Surface toward Highly Efficient Oxygen Reduction Electrocatalysis. Nano Letters, 2020, 20, 1403-1409.	4.5	89
66	A Highly Efficient Metalâ€Free Electrocatalyst of Fâ€Doped Porous Carbon toward N ₂ Electroreduction. Advanced Materials, 2020, 32, e1907690.	11.1	105
67	Surface Iron Species in Palladium–Iron Intermetallic Nanocrystals that Promote and Stabilize CO ₂ Methanation. Angewandte Chemie, 2020, 132, 14542-14550.	1.6	41
68	Bi@Sn Core–Shell Structure with Compressive Strain Boosts the Electroreduction of CO ₂ into Formic Acid. Advanced Science, 2020, 7, 1902989.	5.6	125
69	Electron Correlations Engineer Catalytic Activity of Pyrochlore Iridates for Acidic Water Oxidation. Advanced Materials, 2019, 31, e1805104.	11.1	63
70	Harmonizing the Electronic Structures of the Adsorbate and Catalysts for Efficient CO ₂ Reduction. Nano Letters, 2019, 19, 6547-6553.	4.5	88
71	Single Fe atoms anchored by short-range ordered nanographene boost oxygen reduction reaction in acidic media. Nano Energy, 2019, 66, 104164.	8.2	68
72	Breaking the Local Symmetry of LiCoO ₂ via Atomic Doping for Efficient Oxygen Evolution. Nano Letters, 2019, 19, 8774-8779.	4.5	35

#	Article	IF	CITATIONS
73	Tuning Electronic Structure and Lattice Diffusion Barrier of Ternary Pt–In–Ni for Both Improved Activity and Stability Properties in Oxygen Reduction Electrocatalysis. ACS Catalysis, 2019, 9, 11431-11437.	5.5	36
74	Intercalated Iridium Diselenide Electrocatalysts for Efficient pHâ€Universal Water Splitting. Angewandte Chemie - International Edition, 2019, 58, 14764-14769.	7.2	126
75	Intercalated Iridium Diselenide Electrocatalysts for Efficient pHâ€Universal Water Splitting. Angewandte Chemie, 2019, 131, 14906-14911.	1.6	30
76	Enhanced Electrocatalytic Reduction of CO ₂ via Chemical Coupling between Indium Oxide and Reduced Graphene Oxide. Nano Letters, 2019, 19, 4029-4034.	4.5	142
77	Optimizing reaction paths for methanol synthesis from CO2 hydrogenation via metal-ligand cooperativity. Nature Communications, 2019, 10, 1885.	5.8	116
78	Engineering electronic structures of nanomaterials towardÂcarbon dioxide electroreduction. Current Opinion in Electrochemistry, 2019, 17, 7-15.	2.5	14
79	Rh Doping in Pd Nanocubes Optimizes the Adsorption of 3â€Nitrostyrene towards Selective Hydrogenation of Vinyl Group. ChemCatChem, 2019, 11, 2793-2798.	1.8	8
80	High-index facets of Pt Fe nanowires induce steric effect on selective hydrogenation of acetophenone. Journal of Catalysis, 2019, 373, 209-214.	3.1	15
81	Singleâ€Atom Catalysis: Static Regulation and Dynamic Evolution of Singleâ€Atom Catalysts in Thermal Catalytic Reactions (Adv. Sci. 3/2019). Advanced Science, 2019, 6, 1970015.	5.6	0
82	Oxygen Evolution Reaction: Electron Correlations Engineer Catalytic Activity of Pyrochlore Iridates for Acidic Water Oxidation (Adv. Mater. 6/2019). Advanced Materials, 2019, 31, 1970042.	11.1	72
83	Static Regulation and Dynamic Evolution of Singleâ€Atom Catalysts in Thermal Catalytic Reactions. Advanced Science, 2019, 6, 1801471.	5.6	39
84	Large-Scale and Highly Selective CO2 Electrocatalytic Reduction on Nickel Single-Atom Catalyst. Joule, 2019, 3, 265-278.	11.7	663
85	Competitive Transient Electrostatic Adsorption for In Situ Regeneration of Poisoned Catalyst. ChemCatChem, 2019, 11, 1179-1184.	1.8	3
86	Introduction of carbon–boron atomic groups as an efficient strategy to boost formic acid production toward CO ₂ electrochemical reduction. Chemical Communications, 2018, 54, 3367-3370.	2.2	24
87	Molecular-Level Insight into How Hydroxyl Groups Boost Catalytic Activity in CO2 Hydrogenation into Methanol. CheM, 2018, 4, 613-625.	5.8	110
88	Rhâ€Based Nanocatalysts for Heterogeneous Reactions. ChemNanoMat, 2018, 4, 451-466.	1.5	25
89	Oxygen Vacancies in ZnO Nanosheets Enhance CO ₂ Electrochemical Reduction to CO. Angewandte Chemie, 2018, 130, 6162-6167.	1.6	122
90	Oxygen Vacancies in ZnO Nanosheets Enhance CO ₂ Electrochemical Reduction to CO. Angewandte Chemie - International Edition, 2018, 57, 6054-6059.	7.2	564

#	Article	IF	CITATIONS
91	Achieving the Widest Range of Syngas Proportions at High Current Density over Cadmium Sulfoselenide Nanorods in CO ₂ Electroreduction. Advanced Materials, 2018, 30, 1705872.	11.1	145
92	Synergetic interaction between neighbouring platinum monomers in CO2 hydrogenation. Nature Nanotechnology, 2018, 13, 411-417.	15.6	584
93	Copper–Palladium Tetrapods with Sharp Tips as a Superior Catalyst for the Oxygen Reduction Reaction. ChemCatChem, 2018, 10, 925-930.	1.8	14
94	Nanoimaging of Electronic Heterogeneity in Bi ₂ Se ₃ and Sb ₂ Te ₃ Nanocrystals. Advanced Electronic Materials, 2018, 4, 1700377.	2.6	16
95	Size-Controlled Biocompatible Silver Nanoplates for Contrast-Enhanced Intravital Photoacoustic Mapping of Tumor Vasculature. Journal of Biomedical Nanotechnology, 2018, 14, 1448-1457.	0.5	14
96	Anchoring Pt Single Atoms on CeOx Nanoclusters for CO Oxidation. Microscopy and Microanalysis, 2018, 24, 1660-1661.	0.2	1
97	N ₂ Electrochemical Reduction: Achieving a Recordâ€High Yield Rate of 120.9 μgNH3  mgcat.â~'1  hâ~'1 for N ₂ Electrochemical Reduction over Ru Singleâ€Ato	om ıCa taly	sts5(Adv.) Tj
98	Harnessing copper-palladium alloy tetrapod nanoparticle-induced pro-survival autophagy for optimized photothermal therapy of drug-resistant cancer. Nature Communications, 2018, 9, 4236.	5.8	139
99	Phosphorus-modulated cobalt selenides enable engineered reconstruction of active layers for efficient oxygen evolution. Journal of Catalysis, 2018, 368, 155-162.	3.1	23
100	One-Nanometer-Thick PtNiRh Trimetallic Nanowires with Enhanced Oxygen Reduction Electrocatalysis in Acid Media: Integrating Multiple Advantages into One Catalyst. Journal of the American Chemical Society, 2018, 140, 16159-16167.	6.6	160
101	Pt Single Atoms Embedded in the Surface of Ni Nanocrystals as Highly Active Catalysts for Selective Hydrogenation of Nitro Compounds. Nano Letters, 2018, 18, 3785-3791.	4.5	127
102	Electrical and structural engineering of cobalt selenide nanosheets by Mn modulation for efficient oxygen evolution. Applied Catalysis B: Environmental, 2018, 236, 569-575.	10.8	122
103	Computation-Guided Development of Platinum Alloy Catalyst for Carbon Monoxide Preferential Oxidation. ACS Catalysis, 2018, 8, 5777-5786.	5.5	22
104	Nickel Doping in Atomically Thin Tin Disulfide Nanosheets Enables Highly Efficient CO ₂ Reduction. Angewandte Chemie - International Edition, 2018, 57, 10954-10958.	7.2	186
105	Boosting fuel cell catalysis by surface doping of W on Pd nanocubes. Chinese Journal of Catalysis, 2018, 39, 1202-1209.	6.9	16
106	Nickel Doping in Atomically Thin Tin Disulfide Nanosheets Enables Highly Efficient CO ₂ Reduction. Angewandte Chemie, 2018, 130, 11120-11124.	1.6	42
107	Achieving a Recordâ€High Yield Rate of 120.9 for N ₂ Electrochemical Reduction over Ru Singleâ€Atom Catalysts. Advanced Materials, 2018, 30, e1803498.	11.1	736
108	Integration of Quantum Confinement and Alloy Effect to Modulate Electronic Properties of RhW Nanocrystals for Improved Catalytic Performance toward CO ₂ Hydrogenation. Nano Letters, 2017, 17, 788-793.	4.5	91

#	Article	IF	CITATIONS
109	Understanding of Strain Effects in the Electrochemical Reduction of CO ₂ : Using Pd Nanostructures as an Ideal Platform. Angewandte Chemie, 2017, 129, 3648-3652.	1.6	112
110	Understanding of Strain Effects in the Electrochemical Reduction of CO ₂ : Using Pd Nanostructures as an Ideal Platform. Angewandte Chemie - International Edition, 2017, 56, 3594-3598.	7.2	303
111	2D Behaviors of Excitons in Cesium Lead Halide Perovskite Nanoplatelets. Journal of Physical Chemistry Letters, 2017, 8, 1161-1168.	2.1	115
112	Synthesis and metal–support interaction of subnanometer copper–palladium bimetallic oxide clusters for catalytic oxidation of carbon monoxide. Inorganic Chemistry Frontiers, 2017, 4, 668-674.	3.0	18
113	Integration of Photothermal Effect and Heat Insulation to Efficiently Reduce Reaction Temperature of CO ₂ Hydrogenation. Small, 2017, 13, 1602583.	5.2	77
114	Engineering the Electrical Conductivity of Lamellar Silverâ€Doped Cobalt(II) Selenide Nanobelts for Enhanced Oxygen Evolution. Angewandte Chemie, 2017, 129, 334-338.	1.6	38
115	Engineering the Electrical Conductivity of Lamellar Silverâ€Doped Cobalt(II) Selenide Nanobelts for Enhanced Oxygen Evolution. Angewandte Chemie - International Edition, 2017, 56, 328-332.	7.2	172
116	Achieving Remarkable Activity and Durability toward Oxygen Reduction Reaction Based on Ultrathin Rh-Doped Pt Nanowires. Journal of the American Chemical Society, 2017, 139, 8152-8159.	6.6	265
117	Catalytically active ceria-supported cobalt–manganese oxide nanocatalysts for oxidation of carbon monoxide. Physical Chemistry Chemical Physics, 2017, 19, 14533-14542.	1.3	23
118	Molybdenum Disulfide–Black Phosphorus Hybrid Nanosheets as a Superior Catalyst for Electrochemical Hydrogen Evolution. Nano Letters, 2017, 17, 4311-4316.	4.5	211
119	More accurate depiction of adsorption energy on transition metals using work function as one additional descriptor. Physical Chemistry Chemical Physics, 2017, 19, 12628-12632.	1.3	44
120	Frontispiz: Supported Rhodium Catalysts for Ammonia–Borane Hydrolysis: Dependence of the Catalytic Activity on the Highest Occupied State of the Single Rhodium Atoms. Angewandte Chemie, 2017, 129, .	1.6	0
121	Frontispiece: Supported Rhodium Catalysts for Ammonia–Borane Hydrolysis: Dependence of the Catalytic Activity on the Highest Occupied State of the Single Rhodium Atoms. Angewandte Chemie - International Edition, 2017, 56, .	7.2	0
122	Supported Rhodium Catalysts for Ammonia–Borane Hydrolysis: Dependence of the Catalytic Activity on the Highest Occupied State of the Single Rhodium Atoms. Angewandte Chemie, 2017, 129, 4790-4796.	1.6	27
123	Supported Rhodium Catalysts for Ammonia–Borane Hydrolysis: Dependence of the Catalytic Activity on the Highest Occupied State of the Single Rhodium Atoms. Angewandte Chemie - International Edition, 2017, 56, 4712-4718.	7.2	173
124	Single-Molecule Nanocatalysis Reveals Facet-Dependent Catalytic Kinetics and Dynamics of Pallidium Nanoparticles. ACS Catalysis, 2017, 7, 2967-2972.	5.5	46
125	Plasmon-Modulated Excitation-Dependent Fluorescence from Activated CTAB Molecules Strongly Coupled to Gold Nanoparticles. Scientific Reports, 2017, 7, 43282.	1.6	15
126	Atomically thin cesium lead bromide perovskite quantum wires with high luminescence. Nanoscale, 2017, 9, 104-108.	2.8	45

#	Article	IF	CITATIONS
127	Incorporating nitrogen atoms into cobalt nanosheets as a strategy to boost catalytic activity toward CO2 hydrogenation. Nature Energy, 2017, 2, 869-876.	19.8	179
128	Gold atom-decorated CoSe ₂ nanobelts with engineered active sites for enhanced oxygen evolution. Journal of Materials Chemistry A, 2017, 5, 20202-20207.	5.2	57
129	High performance platinum single atom electrocatalyst for oxygen reduction reaction. Nature Communications, 2017, 8, 15938.	5.8	569
130	Conductive Tungsten Oxide Nanosheets for Highly Efficient Hydrogen Evolution. Nano Letters, 2017, 17, 7968-7973.	4.5	195
131	Precisely Controlled Synthesis of Pt-Pd Octahedral Nanoframes as a Superior Catalyst towards Oxygen Reduction Reaction. Chinese Journal of Chemical Physics, 2017, 30, 581-587.	0.6	3
132	Pt–Cu hierarchical quasi great dodecahedrons with abundant twinning defects for hydrogen evolution. Chemical Communications, 2017, 53, 6922-6925.	2.2	22
133	Effect of Screw-Dislocation on Electrical Properties of Spiral-Type Bi2Se3 Nanoplates. Chinese Journal of Chemical Physics, 2016, 29, 687-692.	0.6	1
134	Pt ₃ Co Octapods as Superior Catalysts of CO ₂ Hydrogenation. Angewandte Chemie - International Edition, 2016, 55, 9548-9552.	7.2	162
135	Innentitelbild: Pt ₃ Co Octapods as Superior Catalysts of CO ₂ Hydrogenation (Angew. Chem. 33/2016). Angewandte Chemie, 2016, 128, 9594-9594.	1.6	1
136	Atomic-level insights in optimizing reaction paths for hydroformylation reaction over Rh/CoO single-atom catalyst. Nature Communications, 2016, 7, 14036.	5.8	281
137	Growth of metal–semiconductor core–multishell nanorods with optimized field confinement and nonlinear enhancement. Nanoscale, 2016, 8, 11969-11975.	2.8	22
138	Integration of Kinetic Control and Lattice Mismatch To Synthesize Pd@AuCu Core–Shell Planar Tetrapods with Size-Dependent Optical Properties. Nano Letters, 2016, 16, 3036-3041.	4.5	58
139	Structural Determination of Catalytically Active Subnanometer Iron Oxide Clusters. ACS Catalysis, 2016, 6, 3072-3082.	5.5	33
140	Ethylenediaminetetraacetic acid-assisted synthesis of Bi2Se3 nanostructures with unique edge sites. Nano Research, 2016, 9, 2707-2714.	5.8	6
141	Contributions of distinct gold species to catalytic reactivity for carbon monoxide oxidation. Nature Communications, 2016, 7, 13481.	5.8	158
142	Engineering electrocatalytic activity in nanosized perovskite cobaltite through surface spin-state transition. Nature Communications, 2016, 7, 11510.	5.8	316
143	Pt ₃ Co Octapods as Superior Catalysts of CO ₂ Hydrogenation. Angewandte Chemie, 2016, 128, 9700-9704.	1.6	20
144	Catalytic Kinetics of Different Types of Surface Atoms on Shaped Pd Nanocrystals. Angewandte Chemie - International Edition, 2016, 55, 1839-1843.	7.2	30

#	Article	IF	CITATIONS
145	Comparative study of the structure, mechanical and thermomechanical properties of cellulose nanopapers with different thickness. Cellulose, 2016, 23, 1375-1382.	2.4	33
146	Raman scattering enhanced within the plasmonic gap between an isolated Ag triangular nanoplate and Ag film. Nanotechnology, 2016, 27, 165401.	1.3	13
147	Nanoframes: Rational Design of Metal Nanoframes for Catalysis and Plasmonics (Small 22/2015). Small, 2015, 11, 2592-2592.	5.2	3
148	Direct Observation of Magneticâ€lon Offâ€Centeringâ€lnduced Ferroelectricity in Multiferroic Manganite Pr(Sr _{0.1} Ca _{0.9}) ₂ Mn ₂ O ₇ . Advanced Materials, 2015, 27, 6328-6332.	11.1	14
149	Au–Pd Alloy Octapods with High Electrocatalytic Activity for the Oxidation of Formic Acid. Particle and Particle Systems Characterization, 2015, 32, 295-300.	1.2	22
150	Controlling the lateral and vertical dimensions of Bi2Se3 nanoplates via seeded growth. Nano Research, 2015, 8, 246-256.	5.8	19
151	Rational Design of Metal Nanoframes for Catalysis and Plasmonics. Small, 2015, 11, 2593-2605.	5.2	121
152	Octahedral Pd@Pt _{1.8} Ni Core–Shell Nanocrystals with Ultrathin PtNi Alloy Shells as Active Catalysts for Oxygen Reduction Reaction. Journal of the American Chemical Society, 2015, 137, 2804-2807.	6.6	310
153	Synthesis of Multishell Nanoplates by Consecutive Epitaxial Growth of Bi ₂ Se ₃ and Bi ₂ Te ₃ Nanoplates and Enhanced Thermoelectric Properties. ACS Nano, 2015, 9, 6843-6853.	7.3	85
154	Chloride-induced shape transformation of silver nanoparticles in a water environment. Environmental Pollution, 2015, 204, 145-151.	3.7	27
155	Copper Nanocrystal Plane Effect on Stereoselectivity of Catalytic Deoxygenation of Aromatic Epoxides. Journal of the American Chemical Society, 2015, 137, 3791-3794.	6.6	50
156	Concave Cu-Pd bimetallic nanocrystals: Ligand-based Co-reduction and mechanistic study. Nano Research, 2015, 8, 2415-2430.	5.8	33
157	Aerobic Oxidation of Cyclohexane on Catalysts Based on Twinned and Single-Crystal Au ₇₅ Pd ₂₅ Bimetallic Nanocrystals. Nano Letters, 2015, 15, 2875-2880.	4.5	92
158	One-pot synthesis of Bi2Se3 nanostructures with rationally tunable morphologies. Nano Research, 2015, 8, 3612-3620.	5.8	25
159	Ratio-Controlled Synthesis of CuNi Octahedra and Nanocubes with Enhanced Catalytic Activity. Journal of the American Chemical Society, 2015, 137, 14027-14030.	6.6	75
160	Size ontrolled Synthesis of Platinum–Copper Hierarchical Trigonal Bipyramid Nanoframes. Angewandte Chemie - International Edition, 2015, 54, 108-113.	7.2	151
161	Facile synthesis of Cu-Pd bimetallic multipods for application in cyclohexane oxidation. Nanotechnology, 2014, 25, 435602.	1.3	18
162	Comparative Study of Aerogels Obtained from Differently Prepared Nanocellulose Fibers. ChemSusChem, 2014, 7, 154-161.	3.6	258

#	Article	IF	CITATIONS
163	Screwâ€Dislocationâ€Driven Bidirectional Spiral Growth of Bi ₂ Se ₃ Nanoplates. Angewandte Chemie - International Edition, 2014, 53, 6425-6429.	7.2	92
164	Oxidative Etching and Its Role in Manipulating the Nucleation and Growth of Noble-Metal Nanocrystals. Chemistry of Materials, 2014, 26, 22-33.	3.2	203
165	Versatile Graphene Quantum Dots with Tunable Nitrogen Doping. Particle and Particle Systems Characterization, 2014, 31, 597-604.	1.2	124
166	One-Step Synthesis of Hybrid Nanocrystals with Rational Tuning of the Morphology. Nano Letters, 2014, 14, 6666-6671.	4.5	33
167	Facile synthesis of pentacle gold–copper alloy nanocrystals and their plasmonic and catalytic properties. Nature Communications, 2014, 5, 4327.	5.8	294
168	Manipulating the oxygen reduction activity of platinum shells with shape-controlled palladium nanocrystal cores. Chemical Communications, 2013, 49, 9030.	2.2	62
169	Seedâ€Mediated Synthesis of Singleâ€Crystal Gold Nanospheres with Controlled Diameters in the Range 5–30 nm and their Selfâ€Assembly upon Dilution. Chemistry - an Asian Journal, 2013, 8, 792-799.	1.7	72
170	A Plasmonâ€Assisted Optofluidic (PAOF) System for Measuring the Photothermal Conversion Efficiencies of Gold Nanostructures and Controlling an Electrical Switch. Angewandte Chemie - International Edition, 2013, 52, 4169-4173.	7.2	287
171	A New Nanobiocatalytic System Based on Allosteric Effect with Dramatically Enhanced Enzymatic Performance. Journal of the American Chemical Society, 2013, 135, 1272-1275.	6.6	284
172	Aqueousâ€Phase Synthesis of Singleâ€Crystal Pd Seeds 3 nm in Diameter and Their Use for the Growth of Pd Nanocrystals with Different Shapes. Chemistry - A European Journal, 2013, 19, 5127-5133.	1.7	36
173	Synthesis and Characterization of Pressure and Temperature Dualâ€Responsive Polystyrene Microbeads. Particle and Particle Systems Characterization, 2013, 30, 542-548.	1.2	4
174	Facile Synthesis of Gold Wavy Nanowires and Investigation of Their Growth Mechanism. Journal of the American Chemical Society, 2012, 134, 20234-20237.	6.6	95
175	Kinetically Controlled Overgrowth of Ag or Au on Pd Nanocrystal Seeds: From Hybrid Dimers to Nonconcentric and Concentric Bimetallic Nanocrystals. Journal of the American Chemical Society, 2012, 134, 15822-15831.	6.6	172
176	Not just a pretty flower. Nature Nanotechnology, 2012, 7, 415-416.	15.6	62
177	Quantitative Analysis of the Role Played by Poly(vinylpyrrolidone) in Seed-Mediated Growth of Ag Nanocrystals. Journal of the American Chemical Society, 2012, 134, 1793-1801.	6.6	277
178	Recent Developments in Shape-Controlled Synthesis of Silver Nanocrystals. Journal of Physical Chemistry C, 2012, 116, 21647-21656.	1.5	166
179	Symmetric and Asymmetric Au–AgCdSe Hybrid Nanorods. Nano Letters, 2012, 12, 5281-5286.	4.5	81
180	Ternary Graphene–TiO ₂ –Fe ₃ O ₄ Nanocomposite as a Recollectable Photocatalyst with Enhanced Durability. European Journal of Inorganic Chemistry, 2012, 2012, 4439-4444.	1.0	83

#	Article	IF	CITATIONS
181	Controlled growth and magnetic properties of $\hat{I}\pm$ -Fe2O3 nanocrystals: Octahedra, cuboctahedra and truncated cubes. CrystEngComm, 2012, 14, 3355.	1.3	16
182	Rücktitelbild: Controlling the Nucleation and Growth of Silver on Palladium Nanocubes by Manipulating the Reaction Kinetics (Angew. Chem. 10/2012). Angewandte Chemie, 2012, 124, 2562-2562.	1.6	0
183	A Mechanistic Study on the Nucleation and Growth of Au on Pd Seeds with a Cubic or Octahedral Shape. ChemCatChem, 2012, 4, 1668-1674.	1.8	28
184	Controlling the Size and Morphology of Au@Pd Core–Shell Nanocrystals by Manipulating the Kinetics of Seeded Growth. Chemistry - A European Journal, 2012, 18, 8150-8156.	1.7	84
185	Controlling the Nucleation and Growth of Silver on Palladium Nanocubes by Manipulating the Reaction Kinetics. Angewandte Chemie - International Edition, 2012, 51, 2354-2358.	7.2	209
186	Back Cover: Controlling the Nucleation and Growth of Silver on Palladium Nanocubes by Manipulating the Reaction Kinetics (Angew. Chem. Int. Ed. 10/2012). Angewandte Chemie - International Edition, 2012, 51, 2512-2512.	7.2	0
187	Charge transfer and retention in directly coupled Au-CdSe nanohybrids. Nano Research, 2012, 5, 88-98.	5.8	49
188	Nanocables composed of anatase nanofibers wrapped in UV-light reduced graphene oxide and their enhancement of photoinduced electron transfer in photoanodes. Journal of Materials Chemistry, 2011, 21, 18174.	6.7	53
189	Controlling the Morphology of Rhodium Nanocrystals by Manipulating the Growth Kinetics with a Syringe Pump. Nano Letters, 2011, 11, 898-903.	4.5	190
190	Selective Sulfuration at the Corner Sites of a Silver Nanocrystal and Its Use in Stabilization of the Shape. Nano Letters, 2011, 11, 3010-3015.	4.5	102
191	Colloidal Hybrid Nanocrystals: Synthesis, Properties, and Perspectives. , 2011, , .		0
192	A Mechanistic Study on the Formation of Silver Nanoplates in the Presence of Silver Seeds and Citric Acid or Citrate lons. Chemistry - an Asian Journal, 2011, 6, 376-379.	1.7	86
193	Controlling the Synthesis and Assembly of Silver Nanostructures for Plasmonic Applications. Chemical Reviews, 2011, 111, 3669-3712.	23.0	2,410
194	Facile Synthesis of Gold Nanorice Enclosed by Highâ€Index Facets and Its Application for CO Oxidation. Small, 2011, 7, 2307-2312.	5.2	62
195	Onâ€Chip Screening of Experimental Conditions for the Synthesis of Nobleâ€Metal Nanostructures with Different Morphologies. Small, 2011, 7, 3308-3316.	5.2	32
196	Successive Deposition of Silver on Silver Nanoplates: Lateral versus Vertical Growth. Angewandte Chemie - International Edition, 2011, 50, 244-249.	7.2	200
197	Silver Nanocrystals with Concave Surfaces and Their Optical and Surfaceâ€Enhanced Raman Scattering Properties. Angewandte Chemie - International Edition, 2011, 50, 12542-12546.	7.2	177
198	Shapeâ€Controlled Synthesis of Copper Nanocrystals in an Aqueous Solution with Glucose as a Reducing Agent and Hexadecylamine as a Capping Agent. Angewandte Chemie - International Edition, 2011, 50, 10560-10564.	7.2	410

#	Article	IF	CITATIONS
199	Inside Cover: Silver Nanocrystals with Concave Surfaces and Their Optical and Surface-Enhanced Raman Scattering Properties (Angew. Chem. Int. Ed. 52/2011). Angewandte Chemie - International Edition, 2011, 50, 12368-12368.	7.2	0
200	Chemical transformations of nanostructured materials. Nano Today, 2011, 6, 186-203.	6.2	230
201	Seedâ€Mediated Synthesis of Truncated Gold Decahedrons with a AuCl/Oleylamine Complex as Precursor. Advanced Materials, 2010, 22, 1930-1934.	11.1	66
202	Coldâ€Based Hybrid Nanocrystals Through Heterogeneous Nucleation and Growth. Advanced Materials, 2010, 22, 1936-1940.	11.1	96
203	Aqueousâ€Phase Synthesis of Pt/CeO ₂ Hybrid Nanostructures and Their Catalytic Properties. Advanced Materials, 2010, 22, 5188-5192.	11.1	235
204	Nanocrystalâ€Based Time–Temperature Indicators. Chemistry - A European Journal, 2010, 16, 12559-12563.	1.7	118
205	Facile Synthesis of Fiveâ€fold Twinned, Starfishâ€like Rhodium Nanocrystals by Eliminating Oxidative Etching with a Chlorideâ€Free Precursor. Angewandte Chemie - International Edition, 2010, 49, 5296-5300.	7.2	97
206	Facile Synthesis of Bimetallic Ag/Ni Core/Sheath Nanowires and Their Magnetic and Electrical Properties. Small, 2010, 6, 1927-1934.	5.2	27
207	Controlling the Shapes of Silver Nanocrystals with Different Capping Agents. Journal of the American Chemical Society, 2010, 132, 8552-8553.	6.6	412
208	Au@Ag Coreâ^'Shell Nanocubes with Finely Tuned and Well-Controlled Sizes, Shell Thicknesses, and Optical Properties. ACS Nano, 2010, 4, 6725-6734.	7.3	511
209	Seed-Mediated Synthesis of Ag Nanocubes with Controllable Edge Lengths in the Range of 30â^'200 nm and Comparison of Their Optical Properties. Journal of the American Chemical Society, 2010, 132, 11372-11378.	6.6	380
210	Aul: an alternative and potentially better precursor than AullI for the synthesis of Au nanostructures. Journal of Materials Chemistry, 2010, 20, 2290.	6.7	49
211	A Comparison Study of the Catalytic Properties of Au-Based Nanocages, Nanoboxes, and Nanoparticles. Nano Letters, 2010, 10, 30-35.	4.5	772
212	Dissolving Ag from Auâ^'Ag Alloy Nanoboxes with H ₂ O ₂ : A Method for Both Tailoring the Optical Properties and Measuring the H ₂ O ₂ Concentration. Journal of Physical Chemistry C, 2010, 114, 6396-6400.	1.5	127
213	Dramatically Enhanced Photoresponse of Reduced Graphene Oxide with Linker-Free Anchored CdSe Nanoparticles. ACS Nano, 2010, 4, 3033-3038.	7.3	258
214	Synthesis of small silver nanocubes in a hydrophobic solvent by introducing oxidative etching with Fe(iii) species. Journal of Materials Chemistry, 2010, 20, 3586.	6.7	50
215	Synthesis of Anatase TiO ₂ Nanocrystals with Exposed {001} Facets. Nano Letters, 2009, 9, 2455-2459.	4.5	380
216	Synthesis of Gold Nanostructures with Controlled Morphologies from AuCl(Oleylamine) Complex. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2009, 25, 1026-1032.	2.2	0

#	Article	IF	CITATIONS
217	Enhancement of Radiation Cytotoxicity in Breast ancer Cells by Localized Attachment of Gold Nanoparticles. Small, 2008, 4, 1537-1543.	5.2	295
218	Mechanisms of unmodified CdSe quantum dot-induced elevation of cytoplasmic calcium levels in primary cultures of rat hippocampal neurons. Biomaterials, 2008, 29, 4383-4391.	5.7	85
219	UV-Light Induced Fabrication of CdCl2Nanotubes through CdSe/Te Nanocrystals Based on Dimension and Configuration Control. Nano Letters, 2008, 8, 1318-1322.	4.5	24
220	Unmodified CdSe Quantum Dots Induce Elevation of Cytoplasmic Calcium Levels and Impairment of Functional Properties of Sodium Channels in Rat Primary Cultured Hippocampal Neurons. Environmental Health Perspectives, 2008, 116, 915-922.	2.8	122
221	High pressure photoluminescence of CdZnSe quantum dots: Alloying effect. Journal of Applied Physics, 2007, 102, .	1.1	28
222	Surface modifications of gold-nanoparticles to enhance radiation cytotoxicity. , 2007, , .		1
223	Gold-Based Nanoparticles for Breast Cancer Diagnosis and Treatment. , 2007, , .		8
224	Necklaceâ€like Nobleâ€Metal Hollow Nanoparticle Chains: Synthesis and Tunable Optical Properties. Advanced Materials, 2007, 19, 2172-2176.	11.1	120
225	Fine tuning photoluminescence properties of CdSe nanoparticles by surface states modulation. Journal of Colloid and Interface Science, 2006, 298, 685-688.	5.0	13
226	Nanoscale Biomarkers for Cancer Genomics and Protemics. , 2006, , .		1
227	Synthesis of Core/Shell Nanoparticles of Au/CdSe via Auâ^'Cd Bialloy Precursor. Langmuir, 2005, 21, 3684-3687.	1.6	57
228	A novel property of styrene–butadiene–styrene/clay nanocomposites: radiation resistance. Journal of Materials Chemistry, 2004, 14, 209-213.	6.7	27
229	Lysineâ€Functionalized SnO ₂ for Efficient CO ₂ Electroreduction into Formate. ChemNanoMat, 0, , .	1.5	2