List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/66121/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Artificial intelligence to improve the diagnosis of cardiovascular diseases. Nature Reviews Cardiology, 2019, 16, 133-133.	6.1	15
2	Active LDL trafficking drives atherosclerosis. Nature Reviews Cardiology, 2019, 16, 384-384.	6.1	0
3	Balancing stress signalling in the heart. Nature Reviews Cardiology, 2019, 16, 384-385.	6.1	О
4	Neutrophil-driven SMC death destabilizes atherosclerotic plaques. Nature Reviews Cardiology, 2019, 16, 455-455.	6.1	12
5	Tailoring optogenetic tools for AF treatment. Nature Reviews Cardiology, 2019, 16, 257-257.	6.1	1
6	Cholesterol efflux drives stem cell expansion in hypercholesterolaemia. Nature Reviews Cardiology, 2019, 16, 323-323.	6.1	0
7	Tailoring antithrombotic strategies for high-risk AF populations. Nature Reviews Cardiology, 2019, 16, 321-321.	6.1	0
8	Stratifying the effects of SGLT2i. Nature Reviews Cardiology, 2019, 16, 322-322.	6.1	0
9	Modulating myosin function to treat hypertrophic cardiomyopathy. Nature Reviews Cardiology, 2019, 16, 201-201.	6.1	2
10	Novel vasodilatory factor identified. Nature Reviews Cardiology, 2019, 16, 258-258.	6.1	3
11	T cells in the gut promote CVD and slow metabolism. Nature Reviews Cardiology, 2019, 16, 201-201.	6.1	Ο
12	Statin efficacy in primary CVD prevention might diminish with patient age. Nature Reviews Cardiology, 2019, 16, 200-200.	6.1	1
13	Breakthrough in heart xenotransplantation. Nature Reviews Cardiology, 2019, 16, 69-69.	6.1	7
14	High relapse rate after HF medication withdrawal. Nature Reviews Cardiology, 2019, 16, 2-2.	6.1	0
15	A new link for heart failure andÂdiabetes. Nature Reviews Cardiology, 2019, 16, 4-4.	6.1	2
16	Targeting PCSK9 to reduce residual risk in ACS. Nature Reviews Cardiology, 2019, 16, 2-2.	6.1	1
17	Feasibility of delaying coronary reperfusion. Nature Reviews Cardiology, 2019, 16, 2-2.	6.1	0
18	Inflammation linked to Takotsubo. Nature Reviews Cardiology, 2019, 16, 5-5.	6.1	2

#	Article	IF	CITATIONS
19	Decoding a major CAD risk locus. Nature Reviews Cardiology, 2019, 16, 70-70.	6.1	0
20	Dietary supplements undergo VITAL test. Nature Reviews Cardiology, 2019, 16, 2-3.	6.1	0
21	A new role for IncRNAs in atherosclerosis. Nature Reviews Cardiology, 2018, 15, 195-195.	6.1	21
22	Redefining leukocytes in atherosclerosis. Nature Reviews Cardiology, 2018, 15, 319-319.	6.1	2
23	Extended predictive value of d-dimer. Nature Reviews Cardiology, 2018, 15, 198-198.	6.1	2
24	New insights from PET imaging. Nature Reviews Cardiology, 2018, 15, 135-135.	6.1	2
25	Pacemakers, ICDs, and MRI. Nature Reviews Cardiology, 2018, 15, 136-136.	6.1	0
26	Noninvasive radioablation for VT. Nature Reviews Cardiology, 2018, 15, 133-133.	6.1	1
27	Should we redefine the 'normal' LDL-cholesterol range?. Nature Reviews Cardiology, 2018, 15, 68-69.	6.1	3
28	No association between heart failure and cancer. Nature Reviews Cardiology, 2018, 15, 318-318.	6.1	0
29	Selenoprotein P — a new player in PAH. Nature Reviews Cardiology, 2018, 15, 381-381.	6.1	2
30	Novel genetic variant linked with high LDL-C levels. Nature Reviews Cardiology, 2018, 15, 318-318.	6.1	0
31	NETs are involved in AAA. Nature Reviews Cardiology, 2018, 15, 257-257.	6.1	6
32	A hydrogel–miRNA complex stimulates heart recovery. Nature Reviews Cardiology, 2018, 15, 68-68.	6.1	12
33	Promising mitochondria-targeting drug for PAH. Nature Reviews Cardiology, 2018, 15, 4-4.	6.1	0
34	IL-11 is a potential therapeutic target in cardiovascular fibrosis. Nature Reviews Cardiology, 2018, 15, 1-1.	6.1	26
35	Further insights into SGLT2 inhibitors. Nature Reviews Cardiology, 2018, 15, 2-2.	6.1	11
36	Takotsubo has long-lasting functional consequences. Nature Reviews Cardiology, 2018, 15, 6-6.	6.1	0

#	Article	IF	CITATIONS
37	Aspirin for primary prevention of CVD: a matter of balance. Nature Reviews Cardiology, 2018, 15, 651-651.	6.1	3
38	Drug-coated balloons — another option for small-vessel disease. Nature Reviews Cardiology, 2018, 15, 652-652.	6.1	1
39	Telemedicine for HF management. Nature Reviews Cardiology, 2018, 15, 656-656.	6.1	0
40	No benefit of MitraClip for secondary mitral regurgitation in heart failure. Nature Reviews Cardiology, 2018, 15, 655-655.	6.1	0
41	Efficacy of cardiac contractility modulation confirmed. Nature Reviews Cardiology, 2018, 15, 382-382.	6.1	1
42	Computer modelling to personalize bioengineered heart valves. Nature Reviews Cardiology, 2018, 15, 440-441.	6.1	3
43	Targeting the cytoskeleton in heart failure. Nature Reviews Cardiology, 2018, 15, 503-503.	6.1	2
44	Whole-genome sequencing for HCM screening. Nature Reviews Cardiology, 2018, 15, 582-582.	6.1	0
45	LDL quality influences CAD progression. Nature Reviews Cardiology, 2018, 15, 582-582.	6.1	0
46	Lower stroke rates with PCI than with surgery. Nature Reviews Cardiology, 2018, 15, 582-582.	6.1	0
47	Unravelling the atheroprotective mechanisms ofÂLDL immunization. Nature Reviews Cardiology, 2018, 15, 583-583.	6.1	0
48	Baby's heart defects can signal mother's CVD risk. Nature Reviews Cardiology, 2018, 15, 318-318.	6.1	1
49	Renewed hopes for renal denervation in hypertension. Nature Reviews Cardiology, 2018, 15, 439-439.	6.1	2
50	Inflammasome activation in AF. Nature Reviews Cardiology, 2018, 15, 442-442.	6.1	1
51	Dual-therapy stent shows promise. Nature Reviews Cardiology, 2018, 15, 502-502.	6.1	0
52	Microbial-dependent TMAO as a prognostic marker in ACS. Nature Reviews Cardiology, 2017, 14, 128-129.	6.1	7
53	Calorie restriction for healthy ageing. Nature Reviews Cardiology, 2017, 14, 190-190.	6.1	2
54	DPP4 inhibitors to prevent aortic valve calcification. Nature Reviews Cardiology, 2017, 14, 190-190.	6.1	1

#	Article	IF	CITATIONS
55	Rivaroxaban, a cost-effective alternative for SVT?. Nature Reviews Cardiology, 2017, 14, 190-190.	6.1	2
56	A robotic heart sleeve to keep the beat. Nature Reviews Cardiology, 2017, 14, 129-129.	6.1	2
57	Neutral results for levosimendan in cardiac surgery. Nature Reviews Cardiology, 2017, 14, 256-256.	6.1	О
58	Surprising role of cardiac macrophages in heart electrical conduction. Nature Reviews Cardiology, 2017, 14, 315-315.	6.1	3
59	Ticagrelor not superior to clopidogrel for PAD. Nature Reviews Cardiology, 2017, 14, 4-5.	6.1	Ο
60	Novel target with antithrombotic potential and low bleeding risk. Nature Reviews Cardiology, 2017, 14, 444-444.	6.1	1
61	New targets for enhancing cardiac regeneration. Nature Reviews Cardiology, 2017, 14, 443-443.	6.1	0
62	Is CETP inhibition a viable therapeutic strategy?. Nature Reviews Cardiology, 2017, 14, 383-383.	6.1	1
63	Angiotensin II — a new tool in vasodilatory shock. Nature Reviews Cardiology, 2017, 14, 384-384.	6.1	1
64	Promising results with siRNA against PCSK9. Nature Reviews Cardiology, 2017, 14, 252-252.	6.1	1
65	Urbanization is a risk factor for CAD. Nature Reviews Cardiology, 2017, 14, 252-252.	6.1	0
66	No early benefits of adjunct therapy with tolvaptan for acute heart failure. Nature Reviews Cardiology, 2017, 14, 256-256.	6.1	3
67	Sacubitril/valsartan improves glycaemic control. Nature Reviews Cardiology, 2017, 14, 252-252.	6.1	2
68	Aircraft noise impairs vascular function. Nature Reviews Cardiology, 2017, 14, 191-191.	6.1	2
69	Mitochondria shine light on heart function. Nature Reviews Cardiology, 2017, 14, 633-633.	6.1	2
70	The healthy diet — fruits, vegetables, legumes, and fats. Nature Reviews Cardiology, 2017, 14, 631-631.	6.1	0
71	Proof of concept for renal denervation. Nature Reviews Cardiology, 2017, 14, 634-634.	6.1	2
72	Ibuprofen increases blood pressure in patients with arthritis. Nature Reviews Cardiology, 2017, 14, 632-633.	6.1	1

#	Article	IF	CITATIONS
73	Poly(A) tail-based regulation of cardiac hypertrophy. Nature Reviews Cardiology, 2017, 14, 504-504.	6.1	1
74	Safety backups to keep the pace. Nature Reviews Cardiology, 2017, 14, 503-503.	6.1	0
75	CABG surgery or PCI for left main CAD?. Nature Reviews Cardiology, 2017, 14, 3-3.	6.1	1
76	Differential lipid metabolism in monocytes and macrophages: influence of cholesterol loading. Journal of Lipid Research, 2016, 57, 574-586.	2.0	34
77	Interatrial shunting for the treatment of heart failure. Nature Reviews Cardiology, 2016, 13, 312-313.	6.1	0
78	Cell therapy improves outcomes in heart failure. Nature Reviews Cardiology, 2016, 13, 311-311.	6.1	1
79	FH genes, beyond LDL-C, predict CAD. Nature Reviews Cardiology, 2016, 13, 314-314.	6.1	0
80	Update on renal artery denervation. Nature Reviews Cardiology, 2016, 13, 570-570.	6.1	0
81	New polygenic risk score improves prediction of CHD. Nature Reviews Cardiology, 2016, 13, 697-697.	6.1	3
82	Treating atherosclerosis with antitumour antibodies. Nature Reviews Cardiology, 2016, 13, 507-507.	6.1	0
83	Heart failure after MI might increase risk of cancer. Nature Reviews Cardiology, 2016, 13, 507-507.	6.1	0
84	Immune system and cardiovascular disease. Nature Reviews Cardiology, 2016, 13, 503-503.	6.1	64
85	PCSK9 inhibition is not associated with new-onset diabetes. Nature Reviews Cardiology, 2016, 13, 569-569.	6.1	1
86	New score for stroke risk. Nature Reviews Cardiology, 2016, 13, 635-635.	6.1	1
87	Targeting factor XIa. Nature Reviews Cardiology, 2016, 13, 632-632.	6.1	0
88	Plaque erosion — antithrombotics without stenting. Nature Reviews Cardiology, 2016, 13, 636-636.	6.1	0
89	Drug-eluting or bare-metal stents?. Nature Reviews Cardiology, 2016, 13, 631-631.	6.1	5
90	A step closer to cardiac repair therapies. Nature Reviews Cardiology, 2016, 13, 695-695.	6.1	2

#	Article	IF	CITATIONS
91	Genetic approach supports cardiovascular safety of GLP1R agonists. Nature Reviews Cardiology, 2016, 13, 444-444.	6.1	0
92	Air pollution accelerates progression of atherosclerosis. Nature Reviews Cardiology, 2016, 13, 379-379.	6.1	7
93	Gut microbes modulate platelet function and thrombosis risk. Nature Reviews Cardiology, 2016, 13, 247-247.	6.1	2
94	The happy heart syndrome. Nature Reviews Cardiology, 2016, 13, 246-247.	6.1	2
95	No improvement in outcomes with gene therapy for heart failure. Nature Reviews Cardiology, 2016, 13, 122-123.	6.1	2
96	Atherosclerosis — do we know enough already to prevent it?. Current Opinion in Pharmacology, 2016, 27, 92-102.	1.7	33
97	Cardiotoxicity of anticancer therapy. Nature Reviews Cardiology, 2016, 13, 183-183.	6.1	9
98	Carotid artery stenosis — stenting or endarterectomy?. Nature Reviews Cardiology, 2016, 13, 181-181.	6.1	0
99	Alcohol intake, MI, and income level. Nature Reviews Cardiology, 2015, 12, 682-682.	6.1	0
100	Mitochondrial DAMPs Induce Endotoxin Tolerance in Human Monocytes: An Observation in Patients with Myocardial Infarction. PLoS ONE, 2014, 9, e95073.	1.1	45
101	NFκB2/p100 Is a Key Factor for Endotoxin Tolerance in Human Monocytes: A Demonstration Using Primary Human Monocytes from Patients with Sepsis. Journal of Immunology, 2014, 193, 4195-4202.	0.4	25
102	CD16 Regulates TRIF-Dependent TLR4 Response in Human Monocytes and Their Subsets. Journal of Immunology, 2012, 188, 3584-3593.	0.4	38
103	Role of MMPs in orchestrating inflammatory response in human monocytes via a TREM-1-PI3K-NF-κB pathway. Journal of Leukocyte Biology, 2012, 91, 933-945.	1.5	26
104	Impaired antigen presentation and potent phagocytic activity identifying tumor-tolerant human monocytes. Biochemical and Biophysical Research Communications, 2012, 423, 331-337.	1.0	18
105	Translocated LPS Might Cause Endotoxin Tolerance in Circulating Monocytes of Cystic Fibrosis Patients. PLoS ONE, 2011, 6, e29577.	1.1	39
106	Persistent competition among stem cells and their daughters in the <i>Drosophila</i> ovary germline niche. Development (Cambridge), 2009, 136, 995-1006.	1.2	84
107	Potent Phagocytic Activity with Impaired Antigen Presentation Identifying Lipopolysaccharide-Tolerant Human Monocytes: Demonstration in Isolated Monocytes from Cystic Fibrosis Patients. Journal of Immunology, 2009, 182, 6494-6507.	0.4	193
108	Monocytes from Cystic Fibrosis Patients Are Locked in an LPS Tolerance State: Down-Regulation of TREM-1 as Putative Underlying Mechanism. PLoS ONE, 2008, 3, e2667.	1.1	76