Akira Wada

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6611773/publications.pdf

Version: 2024-02-01

516215 887659 1,212 17 16 17 h-index citations g-index papers 17 17 17 824 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	YkgM and YkgO maintain translation by replacing their paralogs, zincâ€binding ribosomal proteins L31 and L36, with identical activities. Genes To Cells, 2020, 25, 562-581.	0.5	17
2	Ribosomal protein L31 in <i>Escherichia coli</i> contributes to ribosome subunit association and translation, whereas short L31 cleaved by protease 7 reduces both activities. Genes To Cells, 2017, 22, 452-471.	0.5	27
3	The <scp>100S</scp> ribosome: ribosomal hibernation induced by stress. Wiley Interdisciplinary Reviews RNA, 2014, 5, 723-732.	3.2	74
4	Conservation of two distinct types of $100 < scp > S < / scp > ribosome$ in bacteria. Genes To Cells, 2013, 18, 554-574.	0.5	56
5	Structure of the 100S Ribosome in the Hibernation Stage Revealed by Electron Cryomicroscopy. Structure, 2010, 18, 719-724.	1.6	60
6	Formation of 100S ribosomes in <i>Staphylococcus aureus</i> by the hibernation promoting factor homolog <i>Sa</i> HPF. Genes To Cells, 2010, 15, 43-58.	0.5	73
7	Role of HPF (Hibernation Promoting Factor) in Translational Activity in Escherichia coli. Journal of Biochemistry, 2008, 143, 425-433.	0.9	100
8	Ribosome binding proteins YhbH and YfiA have opposite functions during 100S formation in the stationary phase of Escherichia coli. Genes To Cells, 2005, 10, 1103-1112.	0.5	126
9	RMF inactivates ribosomes by covering the peptidyl transferase centre and entrance of peptide exit tunnel. Genes To Cells, 2004, 9, 271-278.	0.5	59
10	The Ribosome Modulation Factor (RMF) Binding Site on the 100S Ribosome of Escherichia coli. Journal of Biochemistry, 2002, 132, 983-989.	0.9	77
11	Systematic search for zinc-binding proteins in Escherichia coli. FEBS Journal, 2002, 269, 2403-2413.	0.2	57
12	Expression of ribosome modulation factor (RMF) in Escherichia colirequires ppGpp. Genes To Cells, 2001, 6, 665-676.	0.5	92
13	Two proteins, YfiA and YhbH, associated with resting ribosomes in stationary phaseEscherichia coli. Genes To Cells, 2000, 5, 965-974.	0.5	132
14	Growth phase coupled modulation of Escherichia coli ribosomes. Genes To Cells, 1998, 3, 203-208.	0.5	116
15	Analysis of Escherichia coli Ribosomal Proteins by an Improved Two Dimensional Gel Electrophoresis. I. Detection of Four New Proteins. Journal of Biochemistry, 1986, 100, 1583-1594.	0.9	84
16	Analysis of Escherichia coli Ribosomal Proteins by an Improved Two Dimensional Gel Electrophoresis. II. Characterization of Fonr New Proteins. Journal of Biochemistry, 1986, 100, 1595-1605.	0.9	39
17	Conformational Studies ofEscherichia coli Ribosomes with the Use of Acridine Orange as a Probe. Journal of Biochemistry, 1981, 90, 449-461.	0.9	23