Feng Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6611252/publications.pdf

Version: 2024-02-01

567281 477307 29 979 15 29 h-index citations g-index papers 29 29 29 1314 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Intracellular Hybrid Biosystem in a Protozoan to Trigger Visible-Light-Driven Photocatalysis. ACS Applied Materials & Driverfaces, 2021, 13, 19846-19854.	8.0	3
2	Procyanidin B2 Reduces Vascular Calcification through Inactivation of ERK1/2-RUNX2 Pathway. Antioxidants, 2021, 10, 916.	5.1	9
3	Soluble microbial products from the white-rot fungus Phanerochaete chrysosporium as the bioflocculant for municipal wastewater treatment. Science of the Total Environment, 2021, 780, 146662.	8.0	16
4	Plate-Based Kinetic Fluorescence Tests for High-Throughput Screening of Electrochemically Active Bacteria. ACS ES&T Water, 2021, 1, 2139-2145.	4.6	4
5	Extracellular electron transfer via multiple electron shuttles in waterborne <i>Aeromonas hydrophila</i> for bioreduction of pollutants. Biotechnology and Bioengineering, 2021, 118, 4760-4770.	3.3	7
6	Temperature Responsive Shapeâ€Memory Scaffolds with Circumferentially Aligned Nanofibers for Guiding Smooth Muscle Cell Behavior. Macromolecular Bioscience, 2020, 20, e1900312.	4.1	16
7	Rapid aerobic visible-light-driven photo-reduction of nitrobenzene. Science of the Total Environment, 2020, 710, 136322.	8.0	18
8	Defect-engineered transition metal hydroxide nanosheets realizing tumor-microenvironment-responsive multimodal-imaging-guided NIR-II photothermal therapy. Journal of Materials Chemistry B, 2020, 8, 8323-8336.	5.8	17
9	Probing Microbial Extracellular Respiration Ability Using Riboflavin. Analytical Chemistry, 2020, 92, 10606-10612.	6.5	14
10	Room-temperature air oxidation of organic pollutants via electrocatalysis by nanoscaled Co-CoO on graphite felt anode. Environment International, 2019, 131, 104977.	10.0	16
11	Selective Cleavage of C–O Bond in Diaryl Ether Contaminants via Anodic Oxidation. ACS Sustainable Chemistry and Engineering, 2019, 7, 18414-18420.	6.7	3
12	Electro-activation of O2 on MnO2/graphite felt for efficient oxidation of water contaminants under room condition. Chemosphere, 2019, 234, 269-276.	8.2	8
13	Electrochemically Catalytic Degradation of Phenol with Hydrogen Peroxide in Situ Generated and Activated by a Municipal Sludge-Derived Catalyst. ACS Sustainable Chemistry and Engineering, 2018, 6, 5540-5546.	6.7	38
14	Metal organic framework-derived CoMn2O4 catalyst for heterogeneous activation of peroxymonosulfate and sulfanilamide degradation. Chemical Engineering Journal, 2018, 337, 101-109.	12.7	185
15	Graphene Oxide Immobilized PLGAâ€polydopamine Nanofibrous Scaffolds for Growth Inhibition of Colon Cancer Cells. Macromolecular Bioscience, 2018, 18, e1800321.	4.1	14
16	Framework of Cytochrome/Vitamin B ₂ Linker/Graphene for Robust Microbial Electricity Generation. ACS Applied Materials & Samp; Interfaces, 2018, 10, 35090-35098.	8.0	22
17	Algal biomass derived biochar anode for efficient extracellular electron uptake from Shewanella oneidensis MR-1. Frontiers of Environmental Science and Engineering, 2018, 12, 1.	6.0	17
18	Enhancing Extracellular Electron Transfer of <i>Shewanella oneidensis</i> MR-1 through Coupling Improved Flavin Synthesis and Metal-Reducing Conduit for Pollutant Degradation. Environmental Science &	10.0	141

#	Article	IF	CITATIONS
19	A high-throughput dye-reducing photometric assay for evaluating microbial exoelectrogenic ability. Bioresource Technology, 2017, 241, 743-749.	9.6	23
20	Exclusive Extracellular Bioreduction of Methyl Orange by Azo Reductase-Free <i>Geobacter sulfurreducens</i> . Environmental Science & Environmental Sci	10.0	79
21	Rapid Release of Arsenite from Roxarsone Bioreduction by Exoelectrogenic Bacteria. Environmental Science and Technology Letters, 2017, 4, 350-355.	8.7	58
22	Anaerobic reduction of 2,6â€dinitrotoluene by <i>Shewanella oneidensis</i> MRâ€1: Roles of Mtr respiratory pathway and NfnB. Biotechnology and Bioengineering, 2017, 114, 761-768.	3.3	35
23	A magnetic CoFe ₂ O ₄ â€"CNS nanocomposite as an efficient, recyclable catalyst for peroxymonosulfate activation and pollutant degradation. RSC Advances, 2017, 7, 55020-55025.	3.6	47
24	Rapid Detection and Enumeration of Exoelectrogenic Bacteria in Lake Sediments and a Wastewater Treatment Plant Using a Coupled WO ₃ Nanoclusters and Most Probable Number Method. Environmental Science and Technology Letters, 2016, 3, 133-137.	8.7	22
25	A gold microarray electrode on a poly(methylmethacrylate) substrate to improve the performance of microbial fuel cells by modifying biofilm formation. RSC Advances, 2016, 6, 114937-114943.	3.6	5
26	Mechanisms behind the accelerated extracellular electron transfer in Geobacter sulfurreducens DL-1 by modifying gold electrode with self-assembled monolayers. Frontiers of Environmental Science and Engineering, 2016, 10, 531-538.	6.0	12
27	Evaluation of the after-effects of cyanobacterial cell removal and lysis by photocatalysis using Ag/AgBr/TiO2. Water Science and Technology, 2014, 70, 828-834.	2.5	5
28	A plate-based electrochromic approach for the high-throughput detection of electrochemically active bacteria. Nature Protocols, 2014, 9, 112-119.	12.0	69
29	A Photometric High-Throughput Method for Identification of Electrochemically Active Bacteria Using a WO3 Nanocluster Probe. Scientific Reports, 2013, 3, 1315.	3.3	76