Khaled M Saad

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/661077/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Numerical solutions of fractional parabolic equations with generalized <scp>Mittag–Leffler</scp> kernels. Numerical Methods for Partial Differential Equations, 2024, 40, .	2.0	4
2	New models of fractional blood ethanol and two ell cubic autocatalator reaction equations. Mathematical Methods in the Applied Sciences, 2023, 46, 7767-7778.	1.2	12
3	Numerical solution of <i>q</i> â€dynamic equations. Numerical Methods for Partial Differential Equations, 2022, 38, 1162-1179.	2.0	4
4	Numerical solutions of space-fractional diffusion equations via the exponential decay kernel. AIMS Mathematics, 2022, 7, 6535-6549.	0.7	10
5	Certain New Models of the Multi-Space Fractal-Fractional Kuramoto-Sivashinsky and Korteweg-de Vries Equations. Mathematics, 2022, 10, 1089.	1.1	26
6	Existence and Uniqueness of the Solution for an Inverse Problem of a Fractional Diffusion Equation with Integral Condition. Journal of Function Spaces, 2022, 2022, 1-9.	0.4	6
7	Fractal–Fractional Michaelis–Menten Enzymatic Reaction Model via Different Kernels. Fractal and Fractional, 2022, 6, 13.	1.6	23
8	A Nonlinear Fractional Problem with a Second Kind Integral Condition for Time-Fractional Partial Differential Equation. Journal of Function Spaces, 2022, 2022, 1-9.	0.4	1
9	Chaos in Cancer Tumor Growth Model with Commensurate and Incommensurate Fractional-Order Derivatives. Computational and Mathematical Methods in Medicine, 2022, 2022, 1-13.	0.7	9
10	Spatiotemporal (target) patterns in sub-diffusive predator-prey system with the Caputo operator. Chaos, Solitons and Fractals, 2022, 160, 112267.	2.5	22
11	Analysis of the Fractional-Order Local Poisson Equation in Fractal Porous Media. Symmetry, 2022, 14, 1323.	1.1	15
12	Numerical Studies of the Fractional Korteweg-de Vries, Korteweg-de Vries-Burgers' and Burgers' Equations. Proceedings of the National Academy of Sciences India Section A - Physical Sciences, 2021, 91, 67-77.	0.8	21
13	A spectral collocation method for solving fractional KdV and KdV-Burgers equations with non-singular kernel derivatives. Applied Numerical Mathematics, 2021, 161, 137-146.	1.2	63
14	Analytical solutions of \$ q \$-fractional differential equations with proportional derivative. AIMS Mathematics, 2021, 6, 5737-5749.	0.7	0
15	Numerical simulation of the fractal-fractional reaction diffusion equations with general nonlinear. AIMS Mathematics, 2021, 6, 3788-3804.	0.7	21
16	Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete and Continuous Dynamical Systems - Series S, 2021, 14, 3785.	0.6	8
17	A fuzzy fractional model of coronavirus (COVID-19) and its study with Legendre spectral method. Results in Physics, 2021, 21, 103773.	2.0	34
18	An efficient semi-analytical method for solving the generalized regularized long wave equations with a new fractional derivative operator. Journal of King Saud University - Science, 2021, 33, 101345.	1.6	19

#	Article	IF	CITATIONS
19	Comparative study on Fractional Isothermal Chemical Model. AEJ - Alexandria Engineering Journal, 2021, 60, 3265-3274.	3.4	7
20	Numerical Solutions of Certain New Models of the Time-Fractional Gray-Scott. Journal of Function Spaces, 2021, 2021, 1-12.	0.4	8
21	Some Dynamical Models Involving Fractional-Order Derivatives with the Mittag-Leffler Type Kernels and Their Applications Based upon the Legendre Spectral Collocation Method. Fractal and Fractional, 2021, 5, 131.	1.6	16
22	Fractal-fractional Brusselator chemical reaction. Chaos, Solitons and Fractals, 2021, 150, 111087.	2.5	9
23	New exact solutions of time conformable fractional Klein Kramer equation. Optical and Quantum Electronics, 2021, 53, 1.	1.5	8
24	Certain new models of the multi space-fractional Gardner equation. Physica A: Statistical Mechanics and Its Applications, 2020, 545, 123806.	1.2	43
25	New fractional derivative with non-singular kernel for deriving Legendre spectral collocation method. AEJ - Alexandria Engineering Journal, 2020, 59, 1909-1917.	3.4	30
26	A Fractional Quadratic autocatalysis associated with chemical clock reactions involving linear inhibition. Chaos, Solitons and Fractals, 2020, 132, 109557.	2.5	26
27	A comparative study on solving fractional cubic isothermal auto-catalytic chemical system via new efficient technique. Chaos, Solitons and Fractals, 2020, 132, 109555.	2.5	19
28	On exact solutions for time-fractional Korteweg-de Vries and Korteweg-de Vries-Burger's equations using homotopy analysis transform method. Chinese Journal of Physics, 2020, 63, 149-162.	2.0	81
29	Numerical Simulation of the Fractal-Fractional Ebola Virus. Fractal and Fractional, 2020, 4, 49.	1.6	38
30	A fractional numerical study on a chronic hepatitis C virus infection model with immune response. Chaos, Solitons and Fractals, 2020, 139, 110062.	2.5	35
31	A spectral collocation method for fractional chemical clock reactions. Computational and Applied Mathematics, 2020, 39, 1.	1.0	17
32	An efficient spectral collocation method for the dynamic simulation of the fractional epidemiological model of the Ebola virus. Chaos, Solitons and Fractals, 2020, 140, 110174.	2.5	61
33	A Comparative Study of the Fractional-Order Clock Chemical Model. Mathematics, 2020, 8, 1436.	1.1	26
34	Fractal-fractional study of the hepatitis C virus infection model. Results in Physics, 2020, 19, 103555.	2.0	23
35	Some new and modified fractional analysis of the time-fractional Drinfeld–Sokolov–Wilson system. Chaos, 2020, 30, 113104.	1.0	20
36	Stability of Traveling Waves Based upon the Evans Function and Legendre Polynomials. Applied Sciences (Switzerland), 2020, 10, 846.	1.3	9

#	Article	IF	CITATIONS
37	Using Probabilistic Approach to Evaluate the Total Population Density on Coarse Grids. Entropy, 2020, 22, 658.	1.1	1
38	Numerical treatment for studying the blood ethanol concentration systems with different forms of fractional derivatives. International Journal of Modern Physics C, 2020, 31, 2050044.	0.8	27
39	New Approximate Solution of the Time-Fractional Nagumo Equation Involving Fractional Integrals Without Singular Kernel. Applied Mathematics and Information Sciences, 2020, 14, 1-8.	0.7	64
40	Some new mathematical models of the fractional-order system of human immune against IAV infection. Mathematical Biosciences and Engineering, 2020, 17, 4942-4969.	1.0	32
41	Fractional dynamics of an erbium-doped fiber laser model. Optical and Quantum Electronics, 2019, 51, 1.	1.5	12
42	On a new modified fractional analysis of Nagumo equation. International Journal of Biomathematics, 2019, 12, 1950034.	1.5	27
43	Numerical solutions of the fractional Fisher's type equations with Atangana-Baleanu fractional derivative by using spectral collocation methods. Chaos, 2019, 29, 023116.	1.0	113
44	Analytic solution for oxygen diffusion from capillary to tissues involving external force effects: A fractional calculus approach. Physica A: Statistical Mechanics and Its Applications, 2019, 523, 48-65.	1.2	100
45	Model of Coupled System of Fractional Reaction-Diffusion Within a New Fractional Derivative Without Singular Kernel. Studies in Systems, Decision and Control, 2019, , 293-308.	0.8	1
46	Application of the Caputoâ€Fabrizio and Atanganaâ€Baleanu fractional derivatives to mathematical model of cancer chemotherapy effect. Mathematical Methods in the Applied Sciences, 2019, 42, 1167-1193.	1.2	43
47	Comparative study of a cubic autocatalytic reaction via different analysis methods. Discrete and Continuous Dynamical Systems - Series S, 2019, 12, 665-684.	0.6	11
48	A Reliable Analytical Algorithm for Cubic Isothermal Auto-Catalytic Chemical System. Springer Proceedings in Mathematics and Statistics, 2019, , 243-260.	0.1	0
49	Comparing the Caputo, Caputo-Fabrizio and Atangana-Baleanu derivative with fractional order: Fractional cubic isothermal auto-catalytic chemical system. European Physical Journal Plus, 2018, 133, 1.	1.2	55
50	New fractional derivatives applied to the Korteweg–de Vries and Korteweg–de Vries–Burger's equations. Computational and Applied Mathematics, 2018, 37, 5203-5216.	1.3	70
51	A numerical approach for solving the fractional Fisher equation using Chebyshev spectral collocation method. Chaos, Solitons and Fractals, 2018, 110, 169-177.	2.5	84
52	A numerical study by using the Chebyshev collocation method for a problem of biological invasion: Fractional Fisher equation. International Journal of Biomathematics, 2018, 11, 1850099.	1.5	34
53	A reliable analytical algorithm for space–time fractional cubic isothermal autocatalytic chemical system. Pramana - Journal of Physics, 2018, 91, 1.	0.9	17
54	On the numerical evaluation for studying the fractional KdV, KdV-Burgers and Burgers equations. European Physical Journal Plus, 2018, 133, 1.	1.2	36

#	Article	IF	CITATIONS
55	New fractional derivatives with non-singular kernel applied to the Burgers equation. Chaos, 2018, 28, 063109.	1.0	98
56	Analysis of reaction–diffusion system via a new fractional derivative with non-singular kernel. Physica A: Statistical Mechanics and Its Applications, 2018, 509, 703-716.	1.2	109
57	Coupled reaction-diffusion waves in a chemical system via fractional derivatives in Liouville-Caputo sense. Revista Mexicana De FÃsica, 2018, 64, 539-547.	0.2	20
58	An effective homotopy analysis method to solve the cubic isothermal auto-catalytic chemical system. AIMS Mathematics, 2018, 3, 183-194.	0.7	24
59	Optimal q-homotopy analysis method for time-space fractional gas dynamics equation. European Physical Journal Plus, 2017, 132, 1.	1.2	34
60	Analytical study for time and time-space fractional Burgers' equation. Advances in Difference Equations, 2017, 2017, .	3.5	35
61	A Chemotherapy-Diffusion Model for the Cancer Treatment and Initial Dose Control. Kyungpook Mathematical Journal, 2008, 48, 395-410.	0.3	5
62	Numerical methods for computing the Evans function. ANZIAM Journal, 0, 51, 76.	0.0	4