Abasifreke Ebong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6610694/publications.pdf

Version: 2024-02-01

1040056 940533 37 321 9 16 citations g-index h-index papers 38 38 38 372 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Metallization of crystalline silicon solar cells: A review. , 2012, , .		32
2	Understanding and Use of IR Belt Furnace for Rapid Thermal Firing of Screen-Printed Contacts to Si Solar Cells. IEEE Electron Device Letters, 2010, 31, 461-463.	3.9	30
3	High-efficiency (19%) screen-printed textured cells on low-resistivity float-zone silicon with high sheet-resistance emitters. Progress in Photovoltaics: Research and Applications, 2006, 14, 135-144.	8.1	28
4	Empirical Comparison of Random and Periodic Surface Lightâ€Trapping Structures for Ultrathin Silicon Photovoltaics. Advanced Optical Materials, 2016, 4, 858-863.	7.3	28
5	High efficiency inline diffused emitter (ILDE) solar cells on monoâ€crystalline CZ silicon. Progress in Photovoltaics: Research and Applications, 2010, 18, 590-595.	8.1	26
6	Capitalizing on the Glass-Etching Effect of Silver Plating Chemistry to Contact Si Solar Cells With Homogeneous 100–110 \$Omega/hbox{sq}\$ Emitters. IEEE Electron Device Letters, 2011, 32, 779-781.	3.9	16
7	Generalized analysis of the impact of emitter sheet resistance on silicon solar cell performance. Japanese Journal of Applied Physics, 2015, 54, 08KD20.	1.5	15
8	Towards 20% efficient industrial Al-BSF silicon solar cell with multiple busbars and fine gridlines. Solar Energy Materials and Solar Cells, 2016, 146, 107-113.	6.2	15
9	On the Ink Jetting of Full Front Ag Gridlines for Cost-Effective Metallization of Si Solar Cells. IEEE Electron Device Letters, 2012, 33, 637-639.	3.9	14
10	Innovative Front Grid Design, Four-Streets and Five-Busbars (4S-5BB), for High Efficiency Industrial Al-BSF Silicon Solar Cell. IEEE Electron Device Letters, 2016, 37, 459-462.	3.9	11
11	Understanding the influence of tellurium oxide in front Ag paste for contacting silicon solar cells with homogeneous high sheet resistance emitter. Japanese Journal of Applied Physics, 2017, 56, 08MB07.	1.5	10
12	Capitalising on the Precisions of Ion Implantation and Ink Jetted Fine Gridline to Create Low-Cost High Efficiency Silicon Solar Cells. Energy Procedia, 2013, 33, 24-32.	1.8	8
13	Thin film solar technologies: a review. , 2015, , .		8
14	The impact of semimetal nanoparticles on the conduction of thick glass layer at Ag/Si contact interface. Journal of Applied Physics, 2020, 127, .	2.5	8
15	Assessing the impact of multi-busbars on metallization cost and efficiency of solar cells with digital inkjet-printed gridlines. , 2013, , .		7
16	Pathway to low-cost metallization of silicon solar cell through understanding of the silicon metal interface and plating chemistry. Electrochimica Acta, 2014, 128, 336-340.	5.2	7
17	Specifications of ZnO growth for heterostructure solar cell and PC1D based simulations. Data in Brief, 2015, 5, 516-521.	1.0	7
18	An overview of advances in high reliability gate driving mechanisms for SiC MOSFETs., 2017,,.		7

#	Article	IF	Citations
19	Development and Understanding of High-Efficiency Screen-Printed Concentrator Silicon Solar Cells. IEEE Journal of Photovoltaics, 2011, 1, 231-235.	2.5	6
20	Reduction in Light Induced Degradation (LID) in B-doped Cz-Si Solar Cells with SiCxNy Antireflection (AR) Coating. Journal of the Electrochemical Society, 2011, 158, H724.	2.9	6
21	Zinc oxide and silicon based heterojunction solar cell model. , 2015, , .		6
22	Understanding of High-Throughput Rapid Thermal Firing of Screen-Printed Contacts to Large-Area Cast Multicrystalline Si Solar Cells. IEEE Transactions on Electron Devices, 2010, 57, 2872-2879.	3.0	5
23	Impact of Rapid Firing Thermal Processes on Meta-Stable Defects: Preformation of the LeTID and the Suppression of B-O Defects. , 2018, , .		4
24	Resistivity dependence of minority carrier lifetime and cell performance in p-type dendritic web silicon ribbon. Solid-State Electronics, 2001, 45, 1973-1978.	1.4	3
25	The impact of Ag particle size and rapid thermal processing belt speed on contact resistance of a silicon solar cell., 2015,,.		3
26	The Role of Nano-crystallites on Conduction Mechanisms of Current Through Ag Gridlines of Si Solar Cells. MRS Advances, 2019, 4, 311-318.	0.9	3
27	Effect of carbon containing SiNx antireflection coating on the screen-printed contact and low illumination performance of silicon solar cell. Progress in Photovoltaics: Research and Applications, 2013, 21, 351-358.	8.1	2
28	Investigating the benefits of multi busbars for industrial Al-BSF silicon solar cells. , 2015, , .		2
29	Rapid Thermal Annealing of Screen-printable Atmospheric Cu Pastes for PERC Solar Cell. , 2020, , .		2
30	On structural and electrical characterization of n-ZnO/p-Si single heterojunction solar cell. , 2016, , .		1
31	A Cost-Effective Alternative to Dispensing Ag Ink for Highly Efficient Si Solar Cell Contacts. , 2019, , .		1
32	Solar electricity: Realizing the dream through digital inkjet metallization of multi-crystalline Si solar cell. , 2012 , , .		0
33	Commercial size multicrytalline silicon solar cell with ion implant emitter. , 2013, , .		0
34	Comprehensive empirical model for evaluation of the series resistance of a solar cell., 2014,,.		0
35	The use of ImageJ software to correlate the percentage area of Ag crystallites to contact resistance in Si solar cells. , 2016, , .		0
36	Exploiting the Potentials of the Front Surface Field (FSF) Industrial Silicon Solar Cell., 2017, , .		0

Abasifreke Ebong

#	Article	IF	CITATIONS
37	Investigation of the Screen-printable Ag/Cu Contact for Si Solar Cells Using Microstructural, Optical and Electrical Analyses. MRS Advances, 2020, 5, 431-439.	0.9	0