
Yongming Ju

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6610135/publications.pdf Version: 2024-02-01

YONCMING III

#	Article	IF	CITATIONS
1	Microwave photocatalytic degradation of Rhodamine B using TiO2 supported on activated carbon: Mechanism implication. Journal of Environmental Sciences, 2009, 21, 268-272.	6.1	197
2	Microwave induced catalytic degradation of crystal violet in nano-nickel dioxide suspensions. Journal of Hazardous Materials, 2010, 173, 393-400.	12.4	115
3	Microwave-Assisted Rapid Photocatalytic Degradation of Malachite Green in TiO ₂ Suspensions: Mechanism and Pathways. Journal of Physical Chemistry A, 2008, 112, 11172-11177.	2.5	113
4	Microwave-enhanced H2O2-based process for treating aqueous malachite green solutions: Intermediates and degradation mechanism. Journal of Hazardous Materials, 2009, 171, 123-132.	12.4	73
5	Photodegradation of crystal violet in TiO2 suspensions using UV–vis irradiation from two microwave-powered electrodeless discharge lamps (EDL-2): Products, mechanism and feasibility. Journal of Hazardous Materials, 2011, 185, 1489-1498.	12.4	54
6	Environmental application of millimetre-scale sponge iron (s-Fe 0) particles (IV): New insights into visible light photo-Fenton-like process with optimum dosage of H 2 O 2 and RhB photosensitizers. Journal of Hazardous Materials, 2017, 323, 611-620.	12.4	52
7	Synthesis of millimeter-scale sponge Fe/Cu bimetallic particles removing TBBPA and insights of degradation mechanism. Chemical Engineering Journal, 2017, 325, 279-288.	12.7	51
8	Detoxification of municipal solid waste incinerator (MSWI) fly ash by single-mode microwave (MW) irradiation: Addition of urea on the degradation of Dioxin and mechanism. Journal of Hazardous Materials, 2019, 369, 279-289.	12.4	31
9	Environmental application of millimeter-scale sponge iron (s-Fe0) particles (II): The effect of surface copper. Journal of Hazardous Materials, 2015, 287, 325-334.	12.4	25
10	New insight into the cosolvent effect on the degradation of tetrabromobisphenol A (TBBPA) over millimeter-scale palladised sponge iron (Pd-s-FeO) particles. Chemical Engineering Journal, 2019, 361, 1423-1436.	12.7	21
11	Environmental application of millimetre-scale sponge iron (s-Fe0) particles (I): Pretreatment of cationic triphenylmethane dyes. Journal of Hazardous Materials, 2015, 283, 469-479.	12.4	19
12	Could microwave induced catalytic oxidation (MICO) process over CoFe2O4 effectively eliminate brilliant green in aqueous solution?. Journal of Hazardous Materials, 2013, 263, 600-609.	12.4	17
13	Environmental application of millimetre-scale sponge iron (s-Fe0) particles (III): The effect of surface silver. Journal of Hazardous Materials, 2015, 299, 618-629.	12.4	17
14	The influence of a washing pretreatment containing phosphate anions on single-mode microwave-based detoxification of fly ash from municipal solid waste incinerators. Chemical Engineering Journal, 2020, 387, 124053.	12.7	16
15	Synthesis of surface sulfated BiWO with enhanced photocatalytic performance. Journal of Environmental Sciences, 2012, 24, 2180-2190.	6.1	8
16	Mechanism for the elimination of pollutants from aqueous solutions adopting NiR2O4 (R = Fe, Cr and) Tj ETQq0	009.ggBT /	Ovgrlock 10 1

17	Rapid detoxification of dioxin and simultaneous stabilization of targeted heavy metals: New insight into a microwave-induced pyrolysis of fly ash. Chemical Engineering Journal, 2022, 429, 131939.	12.7	6
18	Synthesis of Ag-Cu co-doping sponge iron-based trimetal for boosting simultaneous degradation of combined pollutants. Journal of Hazardous Materials, 2022, 438, 129413.	12.4	6

#	Article	IF	CITATIONS
19	Novel strategy for enhanced visible light-responsive photoactivity of ZnFe2O4 with a single-mode microwave combustion process: Primary parameters. Chemical Engineering Journal, 2022, 440, 135551.	12.7	5