Nicolaas Claudius Gey van Pittius

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6610133/publications.pdf

Version: 2024-02-01

85 papers 6,044 citations

45 h-index 74018 75 g-index

86 all docs 86 docs citations

86 times ranked 6048 citing authors

#	Article	lF	Citations
1	Type VII secretion — mycobacteria show the way. Nature Reviews Microbiology, 2007, 5, 883-891.	13.6	628
2	Evolution and expansion of the Mycobacterium tuberculosis PE and PPE multigene families and their association with the duplication of the ESAT-6 (esx) gene cluster regions. BMC Evolutionary Biology, 2006, 6, 95.	3.2	388
3	Patients with Active Tuberculosis often Have Different Strains in the Same Sputum Specimen. American Journal of Respiratory and Critical Care Medicine, 2004, 169, 610-614.	2.5	267
4	Systematic Genetic Nomenclature for Type VII Secretion Systems. PLoS Pathogens, 2009, 5, e1000507.	2.1	233
5	PPE and PE_PGRS proteins of <i>Mycobacterium marinum</i> are transported via the type VII secretion system ESXâ€5. Molecular Microbiology, 2009, 73, 329-340.	1.2	233
6	A Balancing Act: Efflux/Influx in Mycobacterial Drug Resistance. Antimicrobial Agents and Chemotherapy, 2009, 53, 3181-3189.	1.4	212
7	Novel <i>Mycobacterium tuberculosis</i> Complex Pathogen, <i>M. mungi</i> . Emerging Infectious Diseases, 2010, 16, 1296-1299.	2.0	204
8	Effect of household and community interventions on the burden of tuberculosis in southern Africa: the ZAMSTAR community-randomised trial. Lancet, The, 2013, 382, 1183-1194.	6.3	186
9	Emergence and Spread of Extensively and Totally Drug-Resistant Tuberculosis, South Africa. Emerging Infectious Diseases, 2013, 19, 449-455.	2.0	182
10	Reinfection and Mixed Infection Cause Changing Mycobacterium tuberculosis Drug-Resistance Patterns. American Journal of Respiratory and Critical Care Medicine, 2005, 172, 636-642.	2.5	173
11	Rifampicin Reduces Susceptibility to Ofloxacin in Rifampicin-resistant <i>Mycobacterium tuberculosis</i> through Efflux. American Journal of Respiratory and Critical Care Medicine, 2011, 184, 269-276.	2.5	149
12	Mycobacterium tuberculosis Beijing genotype: A template for success. Tuberculosis, 2011, 91, 510-523.	0.8	139
13	Emergence and Spread of Extensively and Totally Drug-Resistant Tuberculosis, South Africa. Emerging Infectious Diseases, 2013, 19, 449-455.	2.0	127
14	Mutation rate and the emergence of drug resistance in Mycobacterium tuberculosis. Journal of Antimicrobial Chemotherapy, 2014, 69, 292-302.	1.3	123
15	The role of IS6110 in the evolution of Mycobacterium tuberculosis. Tuberculosis, 2007, 87, 393-404.	0.8	103
16	The Diagnostic Performance of the GenoType MTBDR <i>plus</i> Version 2 Line Probe Assay Is Equivalent to That of the Xpert MTB/RIF Assay. Journal of Clinical Microbiology, 2012, 50, 3712-3716.	1.8	103
17	Mycobacterium tuberculosis strains with the Beijing genotype demonstrate variability in virulence associated with transmission. Tuberculosis, 2010, 90, 319-325.	0.8	101
18	Comparative Analysis of Mycobacterium tuberculosis pe and ppe Genes Reveals High Sequence Variation and an Apparent Absence of Selective Constraints. PLoS ONE, 2012, 7, e30593.	1.1	83

#	Article	IF	CITATIONS
19	N ovel Cause of Tuberculosis in Meerkats, South Africa . Emerging Infectious Diseases, 2013, 19, 2004-2007.	2.0	81
20	Application of Sensitive and Specific Molecular Methods To Uncover Global Dissemination of the Major RD ^{Rio} Sublineage of the Latin American-Mediterranean <i>Mycobacterium tuberculosis</i> Spoligotype Family. Journal of Clinical Microbiology, 2008, 46, 1259-1267.	1.8	80
21	Zoonotic tuberculosis and brucellosis in Africa: neglected zoonoses or minor public-health issues? The outcomes of a multi-disciplinary workshop. Annals of Tropical Medicine and Parasitology, 2009, 103, 401-411.	1.6	69
22	The non-clonality of drug resistance in Beijing-genotype isolates of Mycobacterium tuberculosis from the Western Cape of South Africa. BMC Genomics, 2010, 11, 670.	1.2	69
23	Safe Mycobacterium tuberculosis DNA Extraction Method That Does Not Compromise Integrity. Journal of Clinical Microbiology, 2006, 44, 254-256.	1.8	66
24	Phosphoproteomics analysis of a clinical Mycobacterium tuberculosis Beijing isolate: expanding the mycobacterial phosphoproteome catalog. Frontiers in Microbiology, 2015, 6, 6.	1.5	65
25	Frequent Homologous Recombination Events in <i>Mycobacterium tuberculosis</i> PE/PPE Multigene Families: Potential Role in Antigenic Variability. Journal of Bacteriology, 2008, 190, 7838-7846.	1.0	64
26	Evidence for a rapid rate of molecular evolution at the hypervariable and immunogenic Mycobacterium tuberculosis PPE38 gene region. BMC Evolutionary Biology, 2009, 9, 237.	3.2	64
27	The complex architecture of mycobacterial promoters. Tuberculosis, 2013, 93, 60-74.	0.8	64
28	Discordance between Mycobacterial Interspersed Repetitive-Unit-Variable-Number Tandem-Repeat Typing and IS <i>>6110</i> Restriction Fragment Length Polymorphism Genotyping for Analysis of <i>$>$Mycobacterium tuberculosis</i> Beijing Strains in a Setting of High Incidence of Tuberculosis. Journal of Clinical Microbiology, 2008, 46, 3338-3345.	1.8	63
29	Emergence and treatment of multidrug resistant (MDR) and extensively drug-resistant (XDR) tuberculosis in South Africa. Infection, Genetics and Evolution, 2012, 12, 686-694.	1.0	62
30	Recombination in pe/ppe genes contributes to genetic variation in Mycobacterium tuberculosis lineages. BMC Genomics, $2016, 17, 151$.	1.2	62
31	The plasmid-mediated evolution of the mycobacterial ESX (Type VII) secretion systems. BMC Evolutionary Biology, 2016, 16, 62.	3.2	61
32	Tuberculosis due to Resistant Haarlem Strain, Tunisia. Emerging Infectious Diseases, 2005, 11, 957-961.	2.0	60
33	Mutations in the <i>rrs</i> A1401G Gene and Phenotypic Resistance to Amikacin and Capreomycin in <i>Mycobacterium tuberculosis</i> in <i>Resistance, 2012, 18, 193-197.</i>	0.9	60
34	GenoType MTBDR <i>sl</i> Line Probe Assay Shortens Time to Diagnosis of Extensively Drug-Resistant Tuberculosis in a High-Throughput Diagnostic Laboratory. American Journal of Respiratory and Critical Care Medicine, 2012, 186, 1298-1305.	2.5	58
35	Population Structure of Mixed Mycobacterium tuberculosis Infection Is Strain Genotype and Culture Medium Dependent. PLoS ONE, 2013, 8, e70178.	1.1	57
36	Evidence that the Spread of Mycobacterium tuberculosis Strains with the Beijing Genotype Is Human Population Dependent. Journal of Clinical Microbiology, 2007, 45, 2263-2266.	1.8	54

#	Article	IF	Citations
37	Phage-based detection of bacterial pathogens. Analyst, The, 2014, 139, 2617-2626.	1.7	54
38	Geospatial distribution of Mycobacterium tuberculosis genotypes in Africa. PLoS ONE, 2018, 13, e0200632.	1.1	54
39	Mycobacterium tuberculosis Population Structure Determines the Outcome of Genetics-Based Second-Line Drug Resistance Testing. Antimicrobial Agents and Chemotherapy, 2012, 56, 2420-2427.	1.4	53
40	Iron acquisition strategies in mycobacteria. Tuberculosis, 2015, 95, 123-130.	0.8	53
41	Whole genome sequence analysis of Mycobacterium suricattae. Tuberculosis, 2015, 95, 682-688.	0.8	52
42	Mycosin-1, a subtilisin-like serine protease of Mycobacterium tuberculosis, is cell wall-associated and expressed during infection of macrophages. BMC Microbiology, 2002, 2, 30.	1.3	50
43	Population Structure of Multi- and Extensively Drug-Resistant Mycobacterium tuberculosis Strains in South Africa. Journal of Clinical Microbiology, 2012, 50, 995-1002.	1.8	50
44	The mycosins of Mycobacterium tuberculosis H37Rv: a family of subtilisin-like serine proteases. Gene, 2000, 254, 147-155.	1.0	49
45	Bovine tuberculosis in African buffaloes: observations regarding Mycobacterium bovis shedding into water and exposure to environmental mycobacteria. BMC Veterinary Research, 2007, 3, 23.	0.7	49
46	Programmatically Selected Multidrug-Resistant Strains Drive the Emergence of Extensively Drug-Resistant Tuberculosis in South Africa. PLoS ONE, 2013, 8, e70919.	1.1	44
47	Fluorometric Assay for Testing Rifampin Susceptibility of <i>Mycobacterium tuberculosis</i> Complex. Journal of Clinical Microbiology, 2008, 46, 1369-1373.	1.8	43
48	The mechanisms responsible for 2-dimensional pattern formation in bacterial macrofiber populations grown on solid surfaces: fiber joining and the creation of exclusion zones. BMC Microbiology, 2002, 2, 1.	1.3	41
49	Prevalence and Distribution of Non-Tuberculous Mycobacteria (NTM) in Cattle, African Buffaloes (<i>Syncerus caffer</i>) and their Environments in South Africa. Transboundary and Emerging Diseases, 2013, 60, 74-84.	1.3	40
50	Insights into the evolutionary history of tubercle bacilli as disclosed by genetic rearrangements within a PE_PGRS duplicated gene pair. BMC Evolutionary Biology, 2006, 6, 107.	3.2	39
51	The clinical relevance of Mycobacterial pharmacogenetics. Tuberculosis, 2009, 89, 199-202.	0.8	37
52	Progenitor strain introduction of Mycobacterium bovis at the wildlife-livestock interface can lead to clonal expansion of the disease in a single ecosystem. Infection, Genetics and Evolution, 2017, 51, 235-238.	1.0	35
53	Modification of the QuantiFERON-TB Gold (In-Tube) assay for the diagnosis of Mycobacterium bovis infection in African buffaloes (Syncerus caffer). Veterinary Immunology and Immunopathology, 2011, 142, 113-118.	0.5	34
54	ESAT-6 and CFP-10: What Is the Diagnosis?. Infection and Immunity, 2002, 70, 6509-6511.	1.0	32

#	Article	IF	CITATIONS
55	INFECTION OF AFRICAN BUFFALO (SYNCERUS CAFFER) BY ORYX BACILLUS, A RARE MEMBER OF THE ANTELOPE CLADE OF THE MYCOBACTERIUM TUBERCULOSIS COMPLEX. Journal of Wildlife Diseases, 2012, 48, 849-857.	0.3	31
56	Detection of Mycobacterium tuberculosis infection in dogs in a high-risk setting. Research in Veterinary Science, 2012, 92, 414-419.	0.9	31
57	Independent Large Scale Duplications in Multiple M. tuberculosis Lineages Overlapping the Same Genomic Region. PLoS ONE, 2012, 7, e26038.	1.1	30
58	Comparative Genomics and Proteomic Analysis of Four Non-tuberculous Mycobacterium Species and Mycobacterium tuberculosis Complex: Occurrence of Shared Immunogenic Proteins. Frontiers in Microbiology, 2016, 7, 795.	1.5	30
59	Pulmonary Infection due to Mycobacterium bovis in a Black Rhinoceros (Diceros bicornis minor) in South Africa. Journal of Wildlife Diseases, 2009, 45, 1187-1193.	0.3	28
60	Evaluation of the Capilia TB Assay for Culture Confirmation of <i>Mycobacterium tuberculosis</i> Infections in Zambia and South Africa. Journal of Clinical Microbiology, 2010, 48, 3773-3775.	1.8	28
61	Proteogenomic Investigation of Strain Variation in Clinical <i>Mycobacterium tuberculosis</i> Isolates. Journal of Proteome Research, 2017, 16, 3841-3851.	1.8	27
62	Pulmonary infection due to the dassie bacillus (Mycobacterium tuberculosis complex sp.) in a free-living dassie (rock hyrax—Procavia capensis) from South Africa. Tuberculosis, 2008, 88, 80-83.	0.8	25
63	Mixed infections of Corynebacterium pseudotuberculosis and non-tuberculous mycobacteria in South African antelopes presenting with tuberculosis-like lesions. Veterinary Microbiology, 2011, 147, 340-345.	0.8	25
64	Mycobacteria and Disease in Southern Africa. Transboundary and Emerging Diseases, 2013, 60, 147-156.	1.3	18
65	Detection of Mycobacterium kansasii infection in a rhesus macaque (Macaca mulatta) using a modified QuantiFERON-TB Gold assay. Veterinary Immunology and Immunopathology, 2010, 136, 330-334.	0.5	16
66	Pulmonary Infection Due to Mycobacterium goodii in a Spotted Hyena (Crocuta crocuta) from South Africa. Journal of Wildlife Diseases, 2008, 44, 151-154.	0.3	14
67	Characterization of <i>Mycobacterium orygis </i> . Emerging Infectious Diseases, 2012, 18, 1708-1709.	2.0	14
68	Clinical Relevance of Nontuberculous Mycobacteria Isolated from Sputum in a Gold Mining Workforce in South Africa: An Observational, Clinical Study. BioMed Research International, 2015, 2015, 1-10.	0.9	14
69	A metabolomics investigation of the function of the ESX-1 gene cluster in mycobacteria. Microbial Pathogenesis, 2016, 100, 268-275.	1.3	14
70	Assessing the progress of Mycobacterium tuberculosis H37Rv structural genomics. Tuberculosis, 2015, 95, 131-136.	0.8	12
71	Multiple, independent, identical IS6110 insertions in Mycobacterium tuberculosis PPE genes. Tuberculosis, 2009, 89, 439-442.	0.8	11
72	Molecular Epidemiological Interpretation of the Epidemic of Extensively Drug-Resistant Tuberculosis in South Africa. Journal of Clinical Microbiology, 2015, 53, 3650-3653.	1.8	11

#	Article	IF	CITATIONS
73	Detection of natural infection with Mycobacterium intracellulare in healthy wild-caught Chacma baboons (Papio ursinus) by ESAT-6 and CFP-10 IFN-γ ELISPOT tests following a tuberculosis outbreak. BMC Microbiology, 2008, 8, 27.	1.3	10
74	A metabolomics approach exploring the function of the ESX-3 type VII secretion system of M. smegmatis. Metabolomics, 2013, 9, 631-641.	1.4	10
75	Moxifloxacin Retains Antimycobacterial Activity in the Presence of <i>gyrA</i> Mutations. Antimicrobial Agents and Chemotherapy, 2014, 58, 2912-2915.	1.4	10
76	Genetic profile of Mycobacterium tuberculosis and treatment outcomes in human pulmonary tuberculosis in Tanzania. Tanzania Journal of Health Research, 2014, 16, 58-69.	0.1	7
77	A regulatory variant in the C1Q gene cluster is associated with tuberculosis susceptibility and C1qA plasma levels in a South African population. Immunogenetics, 2020, 72, 305-314.	1.2	7
78	Insertion Element IS6110-Based Restriction Fragment Length Polymorphism Genotyping of Mycobacterium tuberculosis. Methods in Molecular Biology, 2009, 465, 353-370.	0.4	7
79	Spectrum of non-tuberculous mycobacteria identified using standard biochemical testing vs. 16S sequencing [Short communication]. International Journal of Tuberculosis and Lung Disease, 2013, 17, 267-269.	0.6	4
80	Two promoters in the esx-3 gene cluster of Mycobacterium smegmatis respond inversely to different iron concentrations in vitro. BMC Research Notes, 2017, 10, 426.	0.6	3
81	Expression and production of soluble Mycobacterium tuberculosis H37Rv mycosin-3. Biochemistry and Biophysics Reports, 2016, 5, 448-452.	0.7	2
82	Chapter 9: Tuberculosis Recurrence: Exogenous or Endogenous?. Progress in Respiratory Research, 2011, , 73-80.	0.1	1
83	Chapter 11: Acquisition, Transmission and Amplification of Drug-Resistant Tuberculosis. Progress in Respiratory Research, 2011, , 96-104.	0.1	1
84	Designation of Major Mycobacterial Interspersed Repetitive-Unit Types within <i>Mycobacterium tuberculosis</i> Beijing Genotype, an Important Point. Journal of Clinical Microbiology, 2007, 45, 4092-4093.	1.8	0
85	Mycobacterial Interspersed Repetitive-Unit–Variable-Number Tandem-Repeat Analysis and Beijing/W Family of Mycobacterium tuberculosisAuthors' Reply: Table 1 Journal of Clinical Microbiology, 2011, 49, 2780-2781.	1.8	0