
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6609972/publications.pdf Version: 2024-02-01

SALL GEORGE

#	Article	IF	CITATIONS
1	Polyethyleneimine Coating Enhances the Cellular Uptake of Mesoporous Silica Nanoparticles and Allows Safe Delivery of siRNA and DNA Constructs. ACS Nano, 2009, 3, 3273-3286.	7.3	817
2	Use of a Rapid Cytotoxicity Screening Approach To Engineer a Safer Zinc Oxide Nanoparticle through Iron Doping. ACS Nano, 2010, 4, 15-29.	7.3	464
3	Role of Fe Doping in Tuning the Band Gap of TiO ₂ for the Photo-Oxidation-Induced Cytotoxicity Paradigm. Journal of the American Chemical Society, 2011, 133, 11270-11278.	6.6	346
4	Decreased Dissolution of ZnO by Iron Doping Yields Nanoparticles with Reduced Toxicity in the Rodent Lung and Zebrafish Embryos. ACS Nano, 2011, 5, 1223-1235.	7.3	341
5	Designed Synthesis of CeO ₂ Nanorods and Nanowires for Studying Toxicological Effects of High Aspect Ratio Nanomaterials. ACS Nano, 2012, 6, 5366-5380.	7.3	323
6	Surface Defects on Plate-Shaped Silver Nanoparticles Contribute to Its Hazard Potential in a Fish Gill Cell Line and Zebrafish Embryos. ACS Nano, 2012, 6, 3745-3759.	7.3	318
7	Use of a High-Throughput Screening Approach Coupled with <i>In Vivo</i> Zebrafish Embryo Screening To Develop Hazard Ranking for Engineered Nanomaterials. ACS Nano, 2011, 5, 1805-1817.	7.3	306
8	A Predictive Toxicological Paradigm for the Safety Assessment of Nanomaterials. ACS Nano, 2009, 3, 1620-1627.	7.3	303
9	Dispersion and Stability Optimization of TiO ₂ Nanoparticles in Cell Culture Media. Environmental Science & Technology, 2010, 44, 7309-7314.	4.6	288
10	Uptake pathways of anionic and cationic photosensitizers into bacteria. Photochemical and Photobiological Sciences, 2009, 8, 788-795.	1.6	202
11	Dispersal State of Multiwalled Carbon Nanotubes Elicits Profibrogenic Cellular Responses That Correlate with Fibrogenesis Biomarkers and Fibrosis in the Murine Lung. ACS Nano, 2011, 5, 9772-9787.	7.3	178
12	High Content Screening in Zebrafish Speeds up Hazard Ranking of Transition Metal Oxide Nanoparticles. ACS Nano, 2011, 5, 7284-7295.	7.3	176
13	Classification NanoSAR Development for Cytotoxicity of Metal Oxide Nanoparticles. Small, 2011, 7, 1118-1126.	5.2	156
14	Quantitative Techniques for Assessing and Controlling the Dispersion and Biological Effects of Multiwalled Carbon Nanotubes in Mammalian Tissue Culture Cells. ACS Nano, 2010, 4, 7241-7252.	7.3	151
15	Nanomaterials in the Environment: From Materials to High-Throughput Screening to Organisms. ACS Nano, 2011, 5, 13-20.	7.3	145
16	Size influences the cytotoxicity of poly (lactic-co-glycolic acid) (PLGA) and titanium dioxide (TiO2) nanoparticles. Archives of Toxicology, 2013, 87, 1075-1086.	1.9	121
17	Photophysical, photochemical, and photobiological characterization of methylene blue formulations for light-activated root canal disinfection. Journal of Biomedical Optics, 2007, 12, 034029.	1.4	114
18	Differential Effect of Solar Light in Increasing the Toxicity of Silver and Titanium Dioxide Nanoparticles to a Fish Cell Line and Zebrafish Embryos. Environmental Science & Technology, 2014, 48, 6374-6382.	4.6	104

#	Article	IF	CITATIONS
19	Size of TiO2 nanoparticles influences their phototoxicity: an in vitro investigation. Archives of Toxicology, 2013, 87, 99-109.	1.9	87
20	Differential Expression of Syndecan-1 Mediates Cationic Nanoparticle Toxicity in Undifferentiated versus Differentiated Normal Human Bronchial Epithelial Cells. ACS Nano, 2011, 5, 2756-2769.	7.3	86
21	Self-Organizing Map Analysis of Toxicity-Related Cell Signaling Pathways for Metal and Metal Oxide Nanoparticles. Environmental Science & Technology, 2011, 45, 1695-1702.	4.6	80
22	Advanced Noninvasive Light-activated Disinfection: Assessment of Cytotoxicity on Fibroblast Versus Antimicrobial Activity Against Enterococcus faecalis. Journal of Endodontics, 2007, 33, 599-602.	1.4	79
23	Influence of Photosensitizer Solvent on the Mechanisms of Photoactivated Killing of <i>Enterococcus faecalis</i> . Photochemistry and Photobiology, 2008, 84, 734-740.	1.3	66
24	Individual and combined effects of Aflatoxin B 1 , Deoxynivalenol and Zearalenone on HepG2 and RAW 264.7 cell lines. Food and Chemical Toxicology, 2017, 103, 18-27.	1.8	65
25	Innovative food processing technologies on the transglutaminase functionality in protein-based food products: Trends, opportunities and drawbacks. Trends in Food Science and Technology, 2018, 75, 194-205.	7.8	65
26	Augmenting the Antibiofilm Efficacy of Advanced Noninvasive Light Activated Disinfection with Emulsified Oxidizer and Oxygen Carrier. Journal of Endodontics, 2008, 34, 1119-1123.	1.4	64
27	Comparison of Acute Aquatic Effects of the Oil Dispersant Corexit 9500 with Those of Other Corexit Series Dispersants. Ecotoxicology and Environmental Safety, 1996, 35, 183-189.	2.9	63
28	Recent advances in the application of microbial transglutaminase crosslinking in cheese and ice cream products: A review. International Journal of Biological Macromolecules, 2018, 107, 2364-2374.	3.6	57
29	New Trends in the Microencapsulation of Functional Fatty Acidâ€Rich Oils Using Transglutaminase Catalyzed Crosslinking. Comprehensive Reviews in Food Science and Food Safety, 2018, 17, 274-289.	5.9	44
30	Awareness on adverse effects of nanotechnology increases negative perception among public: survey study from Singapore. Journal of Nanoparticle Research, 2014, 16, 1.	0.8	35
31	Combined toxicity of prevalent mycotoxins studied in fish cell line and zebrafish larvae revealed that type of interactions is dose-dependent. Aquatic Toxicology, 2017, 193, 60-71.	1.9	33
32	Comparative toxicity of two oil dispersants to the early life stages of two marine species. Environmental Toxicology and Chemistry, 1993, 12, 1855-1863.	2.2	29
33	Effect of Tissue Fluids on Hydrophobicity and Adherence of Enterococcus faecalis to Dentin. Journal of Endodontics, 2007, 33, 1421-1425.	1.4	26
34	Association rule mining of cellular responses induced by metal and metal oxide nanoparticles. Analyst, The, 2014, 139, 943-953.	1.7	26
35	Expert views on societal responses to different applications of nanotechnology: a comparative analysis of experts in countries with different economic and regulatory environments. Journal of Nanoparticle Research, 2013, 15, 1.	0.8	25
36	Possibilities of Gutta-Percha–centered Infection in Endodontically Treated Teeth: An In Vitro Study. Journal of Endodontics, 2010, 36, 1241-1244.	1.4	24

#	Article	IF	CITATIONS
37	A light-assisted in situ embedment of silver nanoparticles to prepare functionalized fabrics. Nanotechnology, Science and Applications, 2017, Volume 10, 147-162.	4.6	23
38	Personal level exposure and hazard potential of particulate matter during haze and non-haze periods in Singapore. Chemosphere, 2020, 243, 125401.	4.2	23
39	Emerging In Vitro Models for Safety Screening of Highâ€Volume Production Nanomaterials under Environmentally Relevant Exposure Conditions. Small, 2013, 9, 1504-1520.	5.2	22
40	Prevalence and mechanisms of antibiotic resistance in Escherichia coli isolated from mastitic dairy cattle in Canada. BMC Microbiology, 2021, 21, 222.	1.3	22
41	Metal-Containing Nano-Antimicrobials: Differentiating the Impact of Solubilized Metals and Particles. , 2012, , 253-290.		19
42	Comparison of the Response of Human Embryonic Stem Cells and Their Differentiated Progenies to Oxidative Stress. Photomedicine and Laser Surgery, 2009, 27, 669-674.	2.1	18
43	Size and site dependent biological hazard potential of particulate matters collected from different heights at the vicinity of a building construction. Toxicology Letters, 2015, 238, 20-29.	0.4	18
44	Enhancing the Bioavailability of Silver Through Nanotechnology Approaches Could Overcome Efflux Pump Mediated Silver Resistance in Methicillin Resistant <i>Staphylococcus aureus</i> . Journal of Biomedical Nanotechnology, 2019, 15, 2216-2228.	0.5	16
45	Toxicity profiling of engineered nanomaterials via multivariate dose-response surface modeling. Annals of Applied Statistics, 2012, 6, 1707-1729.	0.5	14
46	Light activation of gold nanorods but not gold nanospheres enhance antibacterial effect through photodynamic and photothermal mechanisms. Journal of Photochemistry and Photobiology B: Biology, 2022, 231, 112450.	1.7	14
47	Nanoparticle-Enabled Combination Therapy Showed Superior Activity against Multi-Drug Resistant Bacterial Pathogens in Comparison to Free Drugs. Nanomaterials, 2022, 12, 2179.	1.9	14
48	Comparative effects of oil dispersants to the early life stages of topsmelt (<i>Atherinops affinis</i>) and kelp (<i>Macrocystis pyrifera</i>). Environmental Toxicology and Chemistry, 1994, 13, 649-655.	2.2	13
49	Hierarchical Rank Aggregation with Applications to Nanotoxicology. Journal of Agricultural, Biological, and Environmental Statistics, 2013, 18, 159-177.	0.7	13
50	Dietary nanoparticles compromise epithelial integrity and enhance translocation and antigenicity of milk proteins: An in vitro investigation. NanoImpact, 2021, 24, 100369.	2.4	11
51	Hazard profiling of a combinatorial library of zinc oxide nanoparticles: Ameliorating light and dark toxicity through surface passivation. Journal of Hazardous Materials, 2022, 434, 128825.	6.5	11
52	The type of dietary nanoparticles influences salivary protein corona composition. NanoImpact, 2020, 19, 100238.	2.4	10
53	Impact of Silver Nanoparticles in Wastewater on Heavy Metal Transport in Soil and Uptake by Radish Plants. Water, Air, and Soil Pollution, 2021, 232, 1.	1.1	8
54	The multi-facets of sustainable nanotechnology – Lessons from a nanosafety symposium. Nanotoxicology, 2015, 9, 404-406.	1.6	7

#	Article	IF	CITATIONS
55	A Comparative Analysis of Different Grades of Silica Particles and Temperature Variants of Food-Grade Silica Nanoparticles for Their Physicochemical Properties and Effect on Trypsin. Journal of Agricultural and Food Chemistry, 2019, 67, 12264-12272.	2.4	7
56	Composite of Layered Double Hydroxide with Casein and Carboxymethylcellulose as a White Pigment for Food Application. Foods, 2022, 11, 1120.	1.9	7
57	Nanomaterial Properties: Implications for Safe Medical Applications of Nanotechnology. , 2015, , 45-69.		6
58	Low levels of silver in food packaging materials may have no functional advantage, instead enhance microbial spoilage of food through hormetic effect. Food Control, 2021, 123, 107768.	2.8	5
59	Reply to "Assessing the Safety of Nanomaterials by Genomic Approach Could Be Another Alternativeâ€. ACS Nano, 2009, 3, 3830-3831.	7.3	4
60	Protein–biomolecule interactions play a major role in shaping corona proteome: studies on milk interacted dietary particles. Nanoscale, 2021, 13, 13353-13367.	2.8	3
61	Food grade silica nanoparticles cause nonâ€competitive type inhibition of human salivary αâ€amylase because of surface interaction. Nano Select, 2021, 2, 632-641.	1.9	3
62	Inorganic food additive nanomaterials alter the allergenicity of milk proteins. Food and Chemical Toxicology, 2022, 162, 112874.	1.8	3
63	Characterizing the effects of titanium dioxide and silver nanoparticles released from painted surfaces due to weathering on zebrafish (<i>Danio rerio</i>). Nanotoxicology, 2021, 15, 527-541.	1.6	2
64	EVALUATION OF DISPERSANT TOXICITY USING A STANDARDIZED MODELED-EXPOSURE APPROACH. International Oil Spill Conference Proceedings, 1995, 1995, 830-832.	0.1	2
65	ACUTE AQUATIC EFFECTS OF CHEMICALLY DISPERSED AND UNDISPERSED CRUDE OIL. International Oil Spill Conference Proceedings, 1997, 1997, 1020-1021.	0.1	2
66	Enhancing antibiofilm efficacy in antimicrobial photodynamic therapy: effect of microbubbles. , 2013, , .		0
67	Microscopic Characterization of Bacteria-Hard Tissue Interaction. , 2005, , .		0