
Ji Chan Park

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6609952/publications.pdf Version: 2024-02-01

ΙΙ CHAN ΡΑΦΚ

#	Article	IF	CITATIONS
1	Automated synthesis and data accumulation for fast production of high-performance Ni nanocatalysts. Journal of Industrial and Engineering Chemistry, 2022, 106, 449-459.	5.8	6
2	A new synthesis of highly active Rh–Co alloy nanoparticles supported on N-doped porous carbon for catalytic C–Se cross-coupling and <i>p</i> -nitrophenol hydrogenation reactions. New Journal of Chemistry, 2021, 45, 7959-7966.	2.8	5
3	Unravelling the K-promotion effect in highly active and stable Fe5C2 nanoparticles for catalytic linear α-olefin production. Materials Advances, 2021, 2, 1050-1058.	5.4	3
4	Efficient catalyst by a sequential melt infiltration method to achieve a high loading of supported nickel nanoparticles for compact reformer. Journal of Industrial and Engineering Chemistry, 2021, 102, 218-225.	5.8	2
5	Unravelling the reaction mechanism of gas-phase formic acid decomposition on highly dispersed Mo2C nanoparticles supported on graphene flakes. Applied Catalysis B: Environmental, 2020, 264, 118478.	20.2	23
6	Effect of Ba impregnation on Al2O3 catalyst for 1-octene production by 1-octanol dehydration. Fuel, 2020, 281, 118791.	6.4	10
7	A new systematic synthesis of ultimate nickel nanocatalysts for compact hydrogen generation. Reaction Chemistry and Engineering, 2020, 5, 1218-1223.	3.7	4
8	Phase-controlled synthesis of thermally stable nitrogen-doped carbon supported iron catalysts for highly efficient Fischer-Tropsch synthesis. Nano Research, 2019, 12, 2568-2575.	10.4	18
9	Bimetallic NiPd Nanoparticle-Incorporated Ordered Mesoporous Carbon as Highly Efficient Electrocatalysts for Hydrogen Production via Overall Urea Electrolysis. ACS Sustainable Chemistry and Engineering, 2019, 7, 15526-15536.	6.7	44
10	Extremely productive iron-carbide nanoparticles on graphene flakes for CO hydrogenation reactions under harsh conditions. Journal of Catalysis, 2019, 378, 289-297.	6.2	17
11	Production of linear α-olefin 1-octene via dehydration of 1-octanol over Al2O3 catalyst. Fuel, 2019, 256, 115957.	6.4	11
12	Leaching-resistant SnO2/γ-Al2O3 nanocatalyst for stable electrochemical CO2 reduction into formate. Journal of Industrial and Engineering Chemistry, 2019, 78, 73-78.	5.8	21
13	Highly dispersed Ni nanoparticles on mesoporous silica nanospheres by melt infiltration for transfer hydrogenation of aryl ketones. RSC Advances, 2019, 9, 14154-14159.	3.6	7
14	A highly efficient nano-sized Cu ₂ O/SiO ₂ egg-shell catalyst for C–C coupling reactions. RSC Advances, 2018, 8, 6200-6205.	3.6	24
15	Hyperactive iron carbide@N-doped reduced graphene oxide/carbon nanotube hybrid architecture for rapid CO hydrogenation. Journal of Materials Chemistry A, 2018, 6, 11134-11139.	10.3	12
16	A durable nanocatalyst of potassium-doped iron-carbide/alumina for significant production of linear alpha olefins via Fischer-Tropsch synthesis. Applied Catalysis A: General, 2018, 564, 190-198.	4.3	19
17	Robust iron-carbide nanoparticles supported on alumina for sustainable production of gasoline-range hydrocarbons. New Journal of Chemistry, 2017, 41, 2756-2763.	2.8	13
18	Large-scale synthesis of uniformly loaded cobalt nanoparticles on alumina for efficient clean fuel production. RSC Advances, 2017, 7, 8852-8857.	3.6	4

JI CHAN PARK

#	Article	IF	CITATIONS
19	High-performance Fe 5 C 2 @CMK-3 nanocatalyst for selective and high-yield production of gasoline-range hydrocarbons. Journal of Catalysis, 2017, 349, 66-74.	6.2	20
20	Nickel Nanoparticles Supported on CMKâ€3 with Enhanced Catalytic Performance for Hydrogenation of Carbonyl Compounds. European Journal of Inorganic Chemistry, 2016, 2016, 3469-3473.	2.0	6
21	Development of a stand-alone steam methane reformer for on-site hydrogen production. International Journal of Hydrogen Energy, 2016, 41, 8176-8183.	7.1	27
22	Highly productive cobalt nanoparticles supported on mesocellular silica foam for the Fischer–Tropsch reaction. New Journal of Chemistry, 2016, 40, 9586-9592.	2.8	7
23	A Facile Synthesis of SiO ₂ @Co/mSiO ₂ Egg-Shell Nanoreactors for Fischer-Tropsch Reaction. Journal of Nanoscience and Nanotechnology, 2016, 16, 1787-1792.	0.9	2
24	Cs promoted Fe ₅ C ₂ /charcoal nanocatalysts for sustainable liquid fuel production. RSC Advances, 2015, 5, 44211-44217.	3.6	13
25	A new synthesis of carbon encapsulated Fe ₅ C ₂ nanoparticles for high-temperature Fischer–Tropsch synthesis. Nanoscale, 2015, 7, 16616-16620.	5.6	67
26	Facile synthesis of Pd/Fe ₃ O ₄ /charcoal bifunctional catalysts with high metal loading for high product yields in Suzuki–Miyaura coupling reactions. New Journal of Chemistry, 2014, 38, 5626-5632.	2.8	31
27	Highly activated K-doped iron carbide nanocatalysts designed by computational simulation for Fischer–Tropsch synthesis. Journal of Materials Chemistry A, 2014, 2, 14371-14379.	10.3	65
28	Porosity Control of Pd@SiO ₂ Yolk–Shell Nanocatalysts by the Formation of Nickel Phyllosilicate and Its Influence on Suzuki Coupling Reactions. Langmuir, 2012, 28, 6441-6447.	3.5	71
29	Gram cale Synthesis of Magnetically Separable and Recyclable Co@SiO ₂ Yolkâ€Shell Nanocatalysts for Phenoxycarbonylation Reactions. ChemCatChem, 2011, 3, 755-760.	3.7	34
30	Solvent-Free Microwave Promoted [3Â+Â2] Cycloaddition of Alkyne-Azide in Uniform CuO Hollow Nanospheres. Topics in Catalysis, 2010, 53, 523-528.	2.8	21
31	Platinum-Centered Yolkâ^'Shell Nanostructure Formation by Sacrificial Nickel Spacers. Langmuir, 2010, 26, 16469-16473.	3.5	29
32	Catalytic Hydrogen Transfer of Ketones over Ni@SiO ₂ Yolkâ^'Shell Nanocatalysts with Tiny Metal Cores. Journal of Physical Chemistry C, 2010, 114, 6381-6388.	3.1	77
33	Ni@SiO ₂ yolk-shell nanoreactor catalysts: High temperature stability and recyclability. Journal of Materials Chemistry, 2010, 20, 1239-1246.	6.7	210
34	Cu ₂ O Nanocubeâ€Catalyzed Crossâ€Coupling of Aryl Halides with Phenols via Ullmann Coupling. European Journal of Inorganic Chemistry, 2009, 2009, 4219-4223.	2.0	65
35	Chemical transformation and morphology change of nickel–silica hybrid nanostructures via nickel phyllosilicates. Chemical Communications, 2009, , 7345.	4.1	61
36	Synthesis of Polycrystalline Mo/MoOxNanoflakes and Their Transformation to MoO3and MoS2Nanoparticles. Chemistry of Materials, 2007, 19, 2706-2708.	6.7	28