Isabelle Masneuf-Pomarede

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6609881/publications.pdf

Version: 2024-02-01

70 papers

3,936 citations

126708 33 h-index 61 g-index

74 all docs

74 docs citations

74 times ranked

2498 citing authors

#	Article	IF	CITATIONS
1	Impact of mixed Torulaspora delbrueckii–Saccharomyces cerevisiae culture on high-sugar fermentation. International Journal of Food Microbiology, 2008, 122, 312-320.	2.1	316
2	New Hybrids between <i>Saccharomyces </i> Sensu Stricto Yeast Species Found among Wine and Cider Production Strains. Applied and Environmental Microbiology, 1998, 64, 3887-3892.	1.4	220
3	A Gondwanan imprint on global diversity and domestication of wine and cider yeast Saccharomyces uvarum. Nature Communications, 2014, 5, 4044.	5.8	214
4	Characterization of Epiphytic Bacterial Communities from Grapes, Leaves, Bark and Soil of Grapevine Plants Grown, and Their Relations. PLoS ONE, 2013, 8, e73013.	1.1	174
5	Dynamics and diversity of non-Saccharomyces yeasts during the early stages in winemaking. International Journal of Food Microbiology, 2008, 125, 197-203.	2.1	170
6	Reassessment of phenotypic traits for Saccharomyces bayanus var. uvarum wine yeast strains. International Journal of Food Microbiology, 2010, 139, 79-86.	2.1	156
7	Breeding strategies for combining fermentative qualities and reducing off-flavor production in a wine yeast model. FEMS Yeast Research, 2006, 6, 268-279.	1.1	144
8	Association of Saccharomyces bayanus var. uvarum with some French wines: genetic analysis of yeast populations. Research in Microbiology, 2000, 151, 683-691.	1.0	130
9	The grape must non-Saccharomyces microbial community: Impact on volatile thiol release. International Journal of Food Microbiology, 2011, 151, 210-215.	2.1	130
10	Characterization of natural hybrids of Saccharomyces cerevisiae and Saccharomyces bayanusvar.uvarum. FEMS Yeast Research, 2007, 7, 540-549.	1,1	127
11	Molecular genetic study of introgression betweenSaccharomyces bayanus andS. cerevisiae. Yeast, 2005, 22, 1099-1115.	0.8	124
12	Characterization of the yeast ecosystem in grape must and wine using real-time PCR. Food Microbiology, 2010, 27, 559-567.	2.1	116
13	Single QTL mapping and nucleotide-level resolution of a physiologic trait in wineSaccharomyces cerevisiaestrains. FEMS Yeast Research, 2007, 7, 941-952.	1.1	100
14	Grape berry bacterial microbiota: Impact of the ripening process and the farming system. International Journal of Food Microbiology, 2012, 158, 93-100.	2.1	93
15	Brettanomyces bruxellensis population survey reveals a diploid-triploid complex structured according to substrate of isolation and geographical distribution. Scientific Reports, 2018, 8, 4136.	1.6	91
16	Influence of fermentation temperature on volatile thiols concentrations in Sauvignon blanc wines. International Journal of Food Microbiology, 2006, 108, 385-90.	2.1	89
17	Hanseniaspora uvarum from Winemaking Environments Show Spatial and Temporal Genetic Clustering. Frontiers in Microbiology, 2015, 6, 1569.	1.5	86
18	Inheritable nature of enological quantitative traits is demonstrated by meiotic segregation of industrial wine yeast strains. FEMS Yeast Research, 2004, 4, 711-719.	1.1	82

#	Article	IF	Citations
19	The Genetics of Non-conventional Wine Yeasts: Current Knowledge and Future Challenges. Frontiers in Microbiology, 2015, 6, 1563.	1.5	82
20	The complexity of wine: clarifying the role of microorganisms. Applied Microbiology and Biotechnology, 2018, 102, 3995-4007.	1.7	82
21	Influence of the farming system on the epiphytic yeasts and yeast-like fungi colonizing grape berries during the ripening process. International Journal of Food Microbiology, 2014, 177, 21-28.	2.1	81
22	Oenological traits of Lachancea thermotolerans show signs of domestication and allopatric differentiation. Scientific Reports, 2018, 8, 14812.	1.6	78
23	High-throughput sequencing of amplicons for monitoring yeast biodiversity in must and during alcoholic fermentation. Journal of Industrial Microbiology and Biotechnology, 2014, 41, 811-821.	1.4	73
24	The yeast <i>Starmerella bacillaris</i> (synonym <i>Candida zemplinina</i>) shows high genetic diversity in winemaking environments. FEMS Yeast Research, 2015, 15, fov045.	1.1	70
25	Cellar-Associated Saccharomyces cerevisiae Population Structure Revealed High-Level Diversity and Perennial Persistence at Sauternes Wine Estates. Applied and Environmental Microbiology, 2016, 82, 2909-2918.	1.4	66
26	The evolution of Lachancea thermotolerans is driven by geographical determination, anthropisation and flux between different ecosystems. PLoS ONE, 2017, 12, e0184652.	1.1	56
27	Development of microsatellite markers for the rapid and reliable genotyping of Brettanomyces bruxellensis at strain level. Food Microbiology, 2014, 42, 188-195.	2.1	55
28	Oenological prefermentation practices strongly impact yeast population dynamics and alcoholic fermentation kinetics in Chardonnay grape must. International Journal of Food Microbiology, 2014, 178, 87-97.	2.1	49
29	Impact of Lachancea thermotolerans on chemical composition and sensory profiles of Merlot wines. Food Chemistry, 2021, 349, 129015.	4.2	47
30	Molecular Diagnosis of Brettanomyces bruxellensis' Sulfur Dioxide Sensitivity Through Genotype Specific Method. Frontiers in Microbiology, 2018, 9, 1260.	1.5	46
31	A Systems Approach to Elucidate Heterosis of Protein Abundances in Yeast. Molecular and Cellular Proteomics, 2015, 14, 2056-2071.	2.5	42
32	Genetic identification of new biological species Saccharomyces arboricolus Wang et Bai. Antonie Van Leeuwenhoek, 2010, 98, 1-7.	0.7	41
33	The Mitochondrial Genome Impacts Respiration but Not Fermentation in Interspecific Saccharomyces Hybrids. PLoS ONE, 2013, 8, e75121.	1.1	40
34	Hybridization within Saccharomyces Genus Results in Homoeostasis and Phenotypic Novelty in Winemaking Conditions. PLoS ONE, 2015, 10, e0123834.	1.1	31
35	Many interspecific chromosomal introgressions are highly prevalent in Holarctic <i>Saccharomyces uvarum</i> strains found in humanâ€related fermentations. Yeast, 2018, 35, 141-156.	0.8	30
36	Non-Saccharomyces yeasts as bioprotection in the composition of red wine and in the reduction of sulfur dioxide. LWT - Food Science and Technology, 2021, 149, 111781.	2.5	28

#	Article	lF	Citations
37	Combined effect of the Saccharomyces cerevisiae lag phase and the non-Saccharomyces consortium to enhance wine fruitiness and complexity. Applied Microbiology and Biotechnology, 2017, 101, 7603-7620.	1.7	27
38	Genetic diversity study of the yeast Saccharomyces bayanus var. uvarum reveals introgressed subtelomeric Saccharomyces cerevisiae genes. Research in Microbiology, 2011, 162, 204-213.	1.0	26
39	Microsatellite analysis of Saccharomyces uvarum diversity. FEMS Yeast Research, 2016, 16, fow 002.	1.1	26
40	Brettanomyces bruxellensis phenotypic diversity, tolerance to wine stress and wine spoilage ability. Food Microbiology, 2020, 87, 103379.	2.1	25
41	Grapevine rootstock and soil microbiome interactions: Keys for a resilient viticulture. Horticulture Research, 2022, 9, .	2.9	22
42	Sulfur dioxide response of Brettanomyces bruxellensis strains isolated from Greek wine. Food Microbiology, 2019, 78, 155-163.	2.1	19
43	How to adapt winemaking practices to modified grape composition under climate change conditions. Oeno One, 2017, 51, 205-214.	0.7	19
44	Population Dynamics and Yeast Diversity in Early Winemaking Stages without Sulfites Revealed by Three Complementary Approaches. Applied Sciences (Switzerland), 2021, 11, 2494.	1.3	18
45	Brettanomyces bruxellensis wine isolates show high geographical dispersal and long persistence in cellars. PLoS ONE, 2019, 14, e0222749.	1.1	17
46	Competition experiments between <i>Brettanomyces bruxellensis</i> strains reveal specific adaptation to sulfur dioxide and complex interactions at intraspecies level. FEMS Yeast Research, 2019, 19, .	1.1	16
47	Microbiological, biochemical, physicochemical surface properties and biofilm forming ability of Brettanomyces bruxellensis. Annals of Microbiology, 2019, 69, 1217-1225.	1.1	15
48	A S-cysteine conjugate, precursor of aroma of White Sauvignon. Oeno One, 2016, 29, 227.	0.7	14
49	Yeast and Filamentous Fungi Microbial Communities in Organic Red Grape Juice: Effect of Vintage, Maturity Stage, SO2, and Bioprotection. Frontiers in Microbiology, 2021, 12, 748416.	1.5	12
50	+Brettanomyces bruxellensis Displays Variable Susceptibility to Chitosan Treatment in Wine. Frontiers in Microbiology, 2020, 11, 571067.	1.5	11
51	Influence of physiological state of inoculum on volatile acidity production by Saccharomyces cerevisiae during high sugar fermentation. Oeno One, 2016, 39, 191.	0.7	10
52	<i>Brettanomyces bruxellensis</i> : Overview of the genetic and phenotypic diversity of an anthropized yeast. Molecular Ecology, 2023, 32, 2374-2395.	2.0	10
53	SSU1 Checkup, a Rapid Tool for Detecting Chromosomal Rearrangements Related to the SSU1 Promoter in Saccharomyces cerevisiae: An Ecological and Technological Study on Wine Yeast. Frontiers in Microbiology, 2020, 11, 1331.	1.5	9
54	Genetic and Phenotypic Characterisation of a Saccharomyces cerevisiae Population of â€ [~] Merwahâ€ [™] White Wine. Microorganisms, 2019, 7, 492.	1.6	8

#	Article	IF	Citations
55	Grapevine decline is associated with difference in soil microbial composition and activity. Oeno One, 2021, 55, .	0.7	8
56	Hybrids Saccharomyces cerevisiae X Saccharomyces bayanus var. uvarum having a high liberating ability of some sulfur varietal aromas of Vitis vinifera Sauvignon blanc wines. Oeno One, 2016, 36, 205.	0.7	8
57	Correlation between water activity (aw) and microbial epiphytic communities associated with grapes berries. Oeno One, 2020, 54, 49-61.	0.7	7
58	Draft Genome Sequence of the Starmerella bacillaris (syn., Candida zemplinina) Type Strain CBS 9494. Microbiology Resource Announcements, 2018, 7, .	0.3	6
59	Vitis species, vintage, and alcoholic fermentation do not drive population structure in Starmerella bacillaris (synonym Candida zemplinina) species. Yeast, 2019, 36, 411-420.	0.8	6
60	Cellar Temperature Affects <i>Brettanomyces bruxellensis</i> Population and Volatile Phenols Production in Aging Bordeaux Wines. American Journal of Enology and Viticulture, 2020, 71, 1-9.	0.9	6
61	The "pied de cuve―as an alternative way to manage indigenous fermentation: impact on the fermentative process and <i>Saccharomyces cerevisiae</i>) diversity. Oeno One, 2020, 54, 335-342.	0.7	6
62	Grape berry bacterial inhibition by different copper fungicides. BIO Web of Conferences, 2016, 7, 01043.	0.1	5
63	Impact of Lachancea thermotolerans on Chemical Composition and Sensory Profiles of Viognier Wines. Journal of Fungi (Basel, Switzerland), 2022, 8, 474.	1.5	5
64	How to adapt winemaking practices to modified grape composition under climate change conditions. Oeno One, 2017, 51, 205.	0.7	4
65	Quantifying the effect of human practices on S. cerevisiae vineyard metapopulation diversity. Scientific Reports, 2020, 10, 16214.	1.6	3
66	Genetic and phenotypic diversity of Brettanomyces bruxellensis isolates from ageing wines. Food Bioscience, 2021, 40, 100900.	2.0	3
67	Comparaison de deux techniques d'identification des souches de levures de vinification basées sur le polymorphisme de l'ADN génomique: réaction de polymérisation en chaine (PCR) et analyse des caryotypes (électrophorèse en champ pulsé). Oeno One, 2016, 28, 153.	0.7	2
68	Genetic determination of Saccharomyces cerevisiae et Saccharomyces bayanus species by PCR/RFLP analysis of the MET2 gene. Oeno One, 2016, 30, 15.	0.7	1
69	Yeast strains role on the sulphur dioxyde combinations of wines obtained from noble rot and raisining grapes. Oeno One, 2016, 34, 27.	0.7	0
70	New Insights Into Wine Yeast Diversities. , 2019, , 117-163.		0