
Alexey Kalinin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6609836/publications.pdf

Version: 2024-02-01

Διέχεν Κλιινιν

#	Article	IF	CITATIONS
1	Antimicrobial activity of imidazo[1,5-a]quinoxaline derivatives with pyridinium moiety. European Journal of Medicinal Chemistry, 2013, 66, 345-354.	2.6	39
2	Structure-NMR chemical shift relationships for novel functionalized derivatives of quinoxalines. Magnetic Resonance in Chemistry, 2005, 43, 816-828.	1.1	38
3	Pyrrolo[1,2-a]quinoxalines based on pyrroles (Review). Chemistry of Heterocyclic Compounds, 2011, 46, 1423-1442.	0.6	38
4	3-Cyano-2-(dicyano)methylene-4-methyl-2,5-dihydrofurans in the synthesis of nonlinear-optical chromophores (minireview). Chemistry of Heterocyclic Compounds, 2017, 53, 36-38.	0.6	32
5	Synthesis and characterization of new second-order NLO chromophores containing the isomeric indolizine moiety for electro-optical materials. Dyes and Pigments, 2017, 147, 444-454.	2.0	32
6	Pyrrolo[1,2-a]quinoxalines based on quinoxalines (Review). Chemistry of Heterocyclic Compounds, 2010, 46, 641-664.	0.6	31
7	Title is missing!. Chemistry of Heterocyclic Compounds, 2002, 38, 1504-1510.	0.6	30
8	Composite materials containing chromophores with 3,7-(di)vinylquinoxalinone π-electron bridge doped into PMMA: Atomistic modeling and measurements of quadratic nonlinear optical activity. Dyes and Pigments, 2018, 158, 131-141.	2.0	29
9	New achievements in the synthesis of pyrrolo[1,2-a]quinoxalines. Chemistry of Heterocyclic Compounds, 2019, 55, 584-597.	0.6	29
10	Theoretical predictions of nonlinear optical characteristics of novel chromophores with quinoxalinone moieties. Computational and Theoretical Chemistry, 2015, 1074, 91-100.	1.1	28
11	Synthesis and Functionalization of 3-Ethylquinoxalin-2(1H)-one. Russian Journal of Organic Chemistry, 2005, 41, 599-606.	0.3	27
12	High thermally stable D–π–A chromophores with quinoxaline moieties in the conjugated bridge: Synthesis, DFT calculations and physical properties. Dyes and Pigments, 2018, 156, 175-184.	2.0	27
13	D-π-A chromophores with a quinoxaline core in the π-bridge and bulky aryl groups in the acceptor: Synthesis, properties, and femtosecond nonlinear optical activity of the chromophore/PMMA guest-host materials. Dyes and Pigments, 2021, 184, 108801.	2.0	27
14	Quinoxaline-benzimidazole rearrangement in the synthesis of benzimidazole-based podands. Russian Journal of Organic Chemistry, 2006, 42, 1532-1543.	0.3	24
15	Ring contraction in reactions of 3-benzoylquinoxalin-2-ones with 1,2-phenylenediamines. Quinoxaline-benzoimidazole rearrangement. Russian Chemical Bulletin, 2004, 53, 164-175.	0.4	23
16	Synthesis of isomeric (E)-[4-(dimethylamino)phenyl]-vinylquinoxalines – precursors for a new class of nonlinear optical chromophores. Chemistry of Heterocyclic Compounds, 2017, 53, 504-510.	0.6	23
17	Push–pull isomeric chromophores with vinyl- and divinylquinoxaline-2-one units as π-electron bridge: Synthesis, photophysical, thermal and electro-chemical properties. Dyes and Pigments, 2017, 146, 82-91.	2.0	23
18	Large nonlinear optical activity of chromophores with divinylquinoxaline conjugated π-bridge. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 370, 58-66.	2.0	22

#	Article	IF	CITATIONS
19	Nonlinear optical properties of chromophores with indolizine donors: Theoretical study. Computational and Theoretical Chemistry, 2016, 1094, 17-22.	1.1	21
20	Novel quinoxalinone-based push–pull chromophores with highly sensitive emission and absorption properties towards small structural modifications. Physical Chemistry Chemical Physics, 2018, 20, 21515-21527.	1.3	21
21	Quinoxaline-benzimidazole rearrangements in the reactions of 3-alkanoylquinoxalin-2-ones with 1,2-phenylenediamines. Chemistry of Heterocyclic Compounds, 2007, 43, 1307-1314.	0.6	20
22	Cation binding by 21,31-diphenyl-l 2,42-dioxo-7,10,13-trioxa-1,4(3,1)-diquinoxalina-2 (2,3),3(3,2)-diindolizinacyclopentadecaphane and its acyclic analog. Russian Chemical Bulletin, 2009, 58, 89-94.	0.4	19
23	Iodine–sodium acetate (I2–NaOAc) mediated oxidative dimerization of indolizines: an efficient method for the synthesis of biindolizines. Tetrahedron Letters, 2013, 54, 3348-3352.	0.7	19
24	Considerations on electrochemical behavior of NLO chromophores: Relation of redox properties and NLO activity. Electrochimica Acta, 2021, 368, 137578.	2.6	19
25	An efficient method for the synthesis of imidazo[1,5-a]quinoxalines from 3-acylquinoxalinones and benzylamines via a novel imidazoannulation. Tetrahedron, 2009, 65, 9412-9420.	1.0	18
26	Advances in the synthesis of imidazo[1,5- <i>a</i>]- and imidazo[1,2- <i>a</i>]quinoxalines. Russian Chemical Reviews, 2014, 83, 820-847.	2.5	17
27	3-Indolizin-2-ylquinoxalines and the derived monopodands. Russian Chemical Bulletin, 2005, 54, 2616-2625.	0.4	16
28	Redox-switchable binding of the Mg2+ ions by 21,31-diphenyl-12,42-dioxo-7,10,13-trioxa-1,4(3,1)-diquinoxaline-2(2,3),3(3,2)-diindolysine-cyclopentadecaphane. Russian Journal of Electrochemistry, 2007, 43, 770-775.	0.3	16
29	Isomeric indolizine-based π-expanded push–pull NLO-chromophores: Synthesis and comparative study. Journal of Molecular Structure, 2018, 1156, 74-82.	1.8	16
30	Efficient synthesis and structure peculiarity of macrocycles with bi-indolizinylquinoxalinone moieties. Tetrahedron, 2013, 69, 10675-10687.	1.0	15
31	Unexpected quinoxalinobenzimidazole rearrangement. Chemistry of Heterocyclic Compounds, 2000, 36, 882-883.	0.6	13
32	The effect of rotational isomerism on the first hyperpolarizability of chromophores with divinyl quinoxaline conjugated bridge. Chemical Physics Letters, 2017, 681, 16-21.	1.2	13
33	Nonlinear optical activity of push–pull indolizine-based chromophores with various acceptor moieties. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 364, 764-772.	2.0	13
34	To what extent are the photophysical properties of quinoxaline- and quinoxalinone-based chromophores predictable?. Dyes and Pigments, 2019, 170, 107580.	2.0	13
35	Title is missing!. Chemistry of Heterocyclic Compounds, 2003, 39, 96-100.	0.6	12
36	Voltammetric study of metal ions binding by biindolizine heterocyclophanes and their acyclic analogues. Russian Journal of Electrochemistry, 2010, 46, 49-61.	0.3	12

#	Article	IF	CITATIONS
37	Synthesis, structure, and electrochemical properties of 12,42-dioxo-21,31-diphenyl-7,10,13-trioxa-1,4(3,1)-diquinoxalina-2(2,3),3(3,2)-diindolizinacyclopentadecaphane. Russian Chemical Bulletin, 2007, 56, 2060-2073.	0.4	10
38	Title is missing!. Russian Journal of Organic Chemistry, 2003, 39, 125-130.	0.3	9
39	Fused Polycyclic Nitrogen-Containing Heterocycles: VI. Pyrrolo[1,2-a]quinoxalines. Russian Journal of Organic Chemistry, 2004, 40, 114-123.	0.3	9
40	Fused Polycyclic Nitrogen-Containing Heterocycles: IX. Oxidative Fusion of Imidazole Ring to 3-Benzoylquinoxalin-2-ones. Russian Journal of Organic Chemistry, 2004, 40, 1041-1046.	0.3	9
41	Synthesis of 3-alkylquinoxalin-2(1H)-ones via Grignard reaction. Russian Journal of Organic Chemistry, 2009, 45, 1098-1101.	0.3	9
42	Indolizine-based chromophores with octatetraene π-bridge and tricyanofurane acceptor: Synthesis, photophysical, electrochemical and electro-optic properties. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 386, 112125.	2.0	9
43	Imidazo[1,5-a]- and Thiazolo[3,4-a]quinoxalines Based on 3-(a-Thiocyanobenzyl)quinoxalin-2(1H)-one. Chemistry of Heterocyclic Compounds, 2002, 38, 1121-1129.	0.6	8
44	Polyfused nitrogen heterocycles: XIX. Oxidative imidazo-fusion of 3-benzoylquinoxalin-2-ones with benzylamines in the synthesis of bis(imidazo[1,5-a]quinoxalin-1- and -5-yl) derivatives. Russian Journal of Organic Chemistry, 2008, 44, 736-740.	0.3	8
45	Quinoxaline Macrocycles. Advances in Heterocyclic Chemistry, 2014, 112, 51-115.	0.9	8
46	Reaction of 3-Alkanoylquinoxalin-2-Ones with Ammonium Acetate in DMSO – A New Method for the Synthesis of Pyrroles. Chemistry of Heterocyclic Compounds, 2014, 50, 195-203.	0.6	8
47	Synthesis of E,E-4-(6-(N-hydroxyethyl(N-ethyl)-aminostyrylquinoxalin-2-yl)vinyl)-2-dicyanomethylene-3-cyano-2,5-dihydrofurans. Synthetic Communications, 2019, 49, 3528-3535.	1.1	8
48	The effect of various substituents in donor moiety on the aggregation of nonlinear-optical quinoxaline-based chromophores in composite polymer materials. Computational Materials Science, 2020, 183, 109900.	1.4	8
49	D-ï€-A'-ï€-A chromophores with quinoxaline core in the ï€-electron bridge and charged heterocyclic acceptor moiety: Synthesis, DFT calculations, photophysical and electro-chemical properties. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 407, 113042.	2.0	8
50	Title is missing!. Russian Journal of Organic Chemistry, 2003, 39, 131-140.	0.3	7
51	Fused Polycyclic Nitrogen-Containing Heterocycles: VII. Reaction Products of 3-(Â-Chlorobenzyl)-1,2-dihydro-quinoxalin-2-one and Thioureas as Key Intermediate Compounds in the Synthesis of Thiazolo[3,4-a]quinoxalines. Russian Journal of Organic Chemistry, 2004, 40, 527-533.	0.3	7
52	3-Aryl-1-imino-4-oxo-4,5-dihydrothiazolo-[3,4a]quinoxalines. Retrosynthetic approach. Chemistry of Heterocyclic Compounds, 1999, 35, 1459-1473.	0.6	6
53	Catalytic effect of supramolecular system based on cationic surfactant and monopodands in nucleophilic substitution of phosphorus esters. Russian Chemical Bulletin, 2004, 53, 1563-1571.	0.4	6
54	Imidazo[A]Quinoxalines: New Approaches to Synthesis and Biological Activity. Chemistry of Heterocyclic Compounds, 2020, 56, 663-673.	0.6	6

#	Article	lF	CITATIONS
55	Heck reaction in the synthesis of D-ï€-A chromophores: The effect of donor and acceptor on the ratio of 1,2- <i>trans</i> - and 1,1-isomer olefins. Synthetic Communications, 2022, 52, 554-563.	1.1	6
56	Chromophores with quinoxaline core in π-bridge and aniline or carbazole donor moiety: synthesis and comparison of their linear and nonlinear optical properties. Russian Chemical Bulletin, 2022, 71, 1009-1018.	0.4	6
57	Carbon Disulfide in Synthesis of Thiazolo[3,4-a]quinoxalines Based on 3-(Â-Chlorobenzyl)quinoxalin-2-(1H)-ones. Chemistry of Heterocyclic Compounds, 2004, 40, 129-131.	0.6	5
58	Redox active surface films produced by electrooxidation of substituted indolysines. Russian Journal of Electrochemistry, 2006, 42, 212-224.	0.3	5
59	Surface films obtained by electrochemical oxidation of 1,11-bis(3-indolizinin-2-ylquinoxalin-2-on-1-yl)-3,6,9-trioxyundecane. Russian Journal of Electrochemistry, 2007, 43, 1127-1132.	0.3	5
60	Competition of imidazo-annulation and pyrrole-formation in the reactions of benzylamine with 3-acetylquinoxalin-2-ones. Russian Chemical Bulletin, 2008, 57, 219-220.	0.4	5
61	Electrochemical reactions of indolysines. Russian Journal of Electrochemistry, 2011, 47, 1156-1171.	0.3	5
62	A short and efficient protocol for the synthesis of imidazo[1,5- a]quinoxalin-4-ones from 3-aroylquinoxalinones and compounds with the aminomethylene moiety. Tetrahedron, 2015, 71, 147-157.	1.0	5
63	Stimuli-responsive emission of quinoxalinone-based compounds. From experimental findings to theoretical insight by means of multiscale computational spectroscopy approaches. Dyes and Pigments, 2021, 184, 108797.	2.0	5
64	Temperature-sensitive emission of dialkylaminostyrylhetarene dyes and their incorporation into phospholipid aggregates: Applicability for thermal sensing and cellular uptake behavior. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 268, 120647.	2.0	5
65	Composing NLO Chromophore as a Puzzle: Electrochemistryâ€based Approach to Design and Effectiveness. ChemPhysChem, 2021, 22, 2313-2328.	1.0	4
66	Spirothiazolo[4?,2]- and thiazolo-[3,4-a]quinoxalines based on 3-(?-bromoethyl)quinoxalin-2-ones and thiourea. Chemistry of Heterocyclic Compounds, 2004, 40, 1510-1512.	0.6	3
67	Macrocycles, derivatives of nitrogen-containing heterocycles 2. Synthesis and electrochemical properties of diindolizinadiquinoxalinacyclooxaalkaphanes. Russian Chemical Bulletin, 2009, 58, 1484-1492.	0.4	3
68	Macrocycles, derivatives of nitrogen-containing heterocycles 3. Synthesis of di(imidazo[1,5-a]quinoxalina)-2(1,3)-benzadithiacycloalkaphanes. Russian Chemical Bulletin, 2009, 58, 1493-1503.	0.4	3
69	Theoretical predictions of nonlinear optical characteristics of Y-type chromophores with quinoxaline moieties in a bridge. Computational and Theoretical Chemistry, 2022, 1207, 113535.	1.1	3
70	The Effect Of The Additional Phenyl Moiety On The Linear And Quadratic Nonlinear Optical Properties Of Chromophores With Vinyl-Quinoxalinone-Vinyl Î-Bridge. Journal of Photochemistry and Photobiology A: Chemistry, 2022, , 114013.	2.0	3
71	Title is missing!. Chemistry of Heterocyclic Compounds, 2000, 36, 1120-1121.	0.6	2
72	Fused Nitrogen-Containing Heterocycles. Part 4. 3-Benzoyl-2-oxo-1,2-dihydroquinoxaline Hydrazones and Flavazoles Derived Therefrom ChemInform, 2003, 34, no.	0.1	2

#	Article	IF	CITATIONS
73	Polyfused nitrogen-containing heterocycles 18. 2′-Amino-5-methyl-1,2,3,4,4′,5′-hexahydrospiro[quinoxaline-2,4′-thiazol]-3-ones. Synthesis, structure recyclization. Russian Chemical Bulletin, 2007, 56, 2471-2478.	, a o d4	2
74	Generation of the Second Harmonic in Metacrylic Polymer Electret Films Doped with Organic Chromophores. Bulletin of the Russian Academy of Sciences: Physics, 2019, 83, 1480-1483.	0.1	2
75	Characterization of Conjugation Effects in the Series of Quinoxaline-2-ones by Means of Vibrational Raman Spectroscopy. Journal of Physical Chemistry A, 2020, 124, 3865-3875.	1.1	2
76	Polymer Matrix Effect on Nonlinear Optical Response of Composite Materials Doped with a Chromophore Containing a Divinylqunoxaline π-Electron Bridge. Russian Journal of General Chemistry, 2020, 90, 448-453.	0.3	2
77	Methacrylic copolymers with quinoxaline chromophores in the side chain exhibiting quadratic nonlinear optical response. Journal of Applied Polymer Science, 2022, 139, .	1.3	2
78	Cyclodehydration of 3-[α-(2′-aminophenylamino)-benzylidene]-2-oxo-1,4-dihydroquinoxaline into 2,2′-bisbenzimidazole with elimination of the benzylidene fragment. Chemistry of Heterocyclic Compounds, 2000, 36, 226-227.	0.6	1
79	Fused Nitrogen-Containing Heterocycles. Part 3. 4-Oxo-1-phenyl-4,5-dihydroimidazo[1,5-a]quinoxalines. A Retrosynthetic Approach ChemInform, 2003, 34, no.	0.1	1
80	Synthesis, Electrochemical and Mass Spectrometric Properties of the Macrocycles with One, Two and Four 3,3´-Biindolizine Redox-Active Fragments on the 3-(Indolizin-2-yl)quinoxalin-2-one Platform. Macroheterocycles, 2016, 9, 34-45.	0.9	1
81	Synthesis and optical properties of chromophores with a methoxyphenylindolizine moiety. AIP Conference Proceedings, 2022, , .	0.3	1
82	Fused Polycyclic Nitrogen-Containing Heterocycles. Part 6. Pyrrolo[1,2-a]quinoxalines ChemInform, 2004, 35, no.	0.1	0
83	Ring Contraction in Reactions of 3-Benzoylquinoxalin-2-ones with 1,2-Phenylenediamines. Quinoxaline—Benzoimidazole Rearrangement ChemInform, 2004, 35, no.	0.1	0
84	Fused Polycyclic Nitrogen-Containing Heterocycles. Part 7. Reaction Products of 3-(α-Chlorobenzyl)-1,2-dihydroquinoxalin-2-one and Thioureas as Key Intermediate Compounds in the Synthesis of Thiazolo[3,4-a]quinoxalines ChemInform, 2004, 35, no.	0.1	0
85	Fused Polycyclic Nitrogen-Containing Heterocycles. Part 9. Oxidative Fusion of Imidazole Ring to 3-Benzoylquinoxalin-2-ones ChemInform, 2005, 36, no.	0.1	0
86	Synthesis and Functionalization of 3-Ethylquinoxalin-2(1H)-one ChemInform, 2005, 36, no.	0.1	0
87	Molecular modeling in design of nonlinear-optical polymer materials doped with indolizine chromophores with isolating groups in donor and acceptor moieties. AIP Conference Proceedings, 2022	0.3	0