
Sriram Krishnaswamy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/660948/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	New insights into the spatiotemporal localization of prothrombinase in vivo. Blood, 2014, 124, 1705-1714.	1.4	85
2	Selective factor VIII activation by the tissue factor–factor VIIa–factor Xa complex. Blood, 2017, 130, 1661-1670.	1.4	58
3	Combination of aptamer and drug for reversible anticoagulation in cardiopulmonary bypass. Nature Biotechnology, 2018, 36, 606-613.	17.5	52
4	A rapid pro-hemostatic approach to overcome direct oral anticoagulants. Nature Medicine, 2016, 22, 924-932.	30.7	39
5	Restoring the Procofactor State of Factor Va-like Variants by Complementation with B-domain Peptides. Journal of Biological Chemistry, 2013, 288, 30151-30160.	3.4	28
6	Structural and Functional Studies of γ-Carboxyglutamic Acid Domains of Factor VIIa and Activated Protein C: Role of Magnesium at Physiological Calcium. Journal of Molecular Biology, 2013, 425, 1961-1981.	4.2	26
7	Phosphatidylinositol transfer protein-α in platelets is inconsequential for thrombosis yet is utilized for tumor metastasis. Nature Communications, 2017, 8, 1216.	12.8	22
8	Structural and Functional Studies to Define the Molecular Basis by Which Platelet Factor 4 (PF4) Increases Survival of Mice in Lipopolysaccharide (LPS)-Induced Endotoxicity. Blood, 2008, 112, 19-19.	1.4	21
9	FcRn augments induction of tissue factor activity by IgG-containing immune complexes. Blood, 2020, 135, 2085-2093.	1.4	19
10	FVIII-VWF dos-Ã-dos. Blood, 2015, 126, 923-924.	1.4	6
11	Occlusion of anion-binding exosite 2 in meizothrombin explains its impaired ability to activate factor V. Journal of Biological Chemistry, 2019, 294, 2422-2435.	3.4	6
12	Exosite binding drives substrate affinity for the activation of coagulation factor X by the intrinsic Xase complex. Journal of Biological Chemistry, 2020, 295, 15198-15207.	3.4	6
13	Advances in Clinical and Basic Science of Coagulation: Illustrated abstracts of the 9th Chapel Hill Symposium on Hemostasis. Research and Practice in Thrombosis and Haemostasis, 2018, 2, 407-428.	2.3	5
14	Generation of an anticoagulant aptamer that targets factor V/Va and disrupts the FVa-membrane interaction in normal and COVID-19 patient samples. Cell Chemical Biology, 2022, 29, 215-225.e5.	5.2	5
15	The Fragment 1 Region of Prothrombin Facilitates the Favored Binding of Fragment 12 to Zymogen and Enforces Zymogen-like Character in the Proteinase. Journal of Biological Chemistry, 2016, 291, 11114-11123.	3.4	3
16	JNJ-64179375 Inhibits Exosite I-Mediated Thrombin Activity While Preserving Exosite II and Active Site Function in Vitro. Blood, 2018, 132, 24-24.	1.4	2
17	Clotting in whole blood: analysis of a biochemical reaction network. Blood, 2002, 100, 1-1.	1.4	1
18	Imaging of Coagulation Reactions During Thrombus Formation In Vivo with Novel Fluorescent Protein Derivatives. Blood, 2010, 116, 817-817.	1.4	1

SRIRAM KRISHNASWAMY

#	Article	IF	CITATIONS
19	The NET Effect: Platelet Factor 4 and DNA-Histone Interactions in Sepsis. Blood, 2015, 126, 2197-2197.	1.4	1
20	Active Site-Dependent Substrate Recognition Plays a Primary Role in Determining the Affinity of the Thrombin-Thrombomodulin Complex for Protein C Blood, 2004, 104, 125-125.	1.4	1
21	Meizothrombin Is Unexpectedly Zymogen-Like: Its Slow Conversion to Proteinase Dominates Thrombin Production by Prothrombinase. Blood, 2010, 116, 2215-2215.	1.4	1
22	High Resolution X-Ray Structure of Snake Venom Factor V: Evolution of a Hemostatic Cofactor to a Toxin Poised to Inflict Maximal Damage to Mammalian Blood Coagulation. Blood, 2011, 118, 375-375.	1.4	1
23	Mg2+ Is Required for Optimal Folding of the γ-Carboxyglutamic Acid (Gla) Domains of Vitamin K-Dependent Clotting Factors At Physiological Ca2+. Blood, 2011, 118, 1172-1172.	1.4	1
24	Distinct Mechanism of Anti-Hemophilic FVIII Activation By Nascent FXa in the Tissue Factor-FVIIa Coagulation Initiation Complex Resistant to FXa-Directed Inhibition. Blood, 2014, 124, 2803-2803.	1.4	1
25	Long-Range Allosteric Linkage Between Exosites Reciprocally Regulates the Zymogenicity of Prothrombin Derivatives. Blood, 2015, 126, 122-122.	1.4	1
26	Prothrombin Membrane Binding and Gla-Dependent Function Are Not Required for Effective Hemostasis In Vivo. Blood, 2015, 126, 124-124.	1.4	1
27	Platelet Pitp-Alpha Promotes Thrombin Generation and the Dissemination of Tumor Metastasis, but Has Minimal Effect on Vascular Plug Formation. Blood, 2015, 126, 418-418.	1.4	1
28	The X-Ray Structure of a Variant of Human Factor V Provides Structural Insights into the Procofactor Activation Paradox. Blood, 2015, 126, 121-121.	1.4	1
29	Anticoagulation by a thrombin precursor. Blood, 2004, 104, 301-301.	1.4	Ο
30	Killing 2 proteinases with 1 (dual-acting) stone. Blood, 2012, 119, 2182-2183.	1.4	0
31	ISTH congress 2021. Journal of Thrombosis and Haemostasis, 2021, 19, 1385-1385.	3.8	0
32	The Substrate -Membrane Interaction Constrains Bond Presentation and Cleavage in the Action of Prothrombinase on Prothrombin Blood, 2004, 104, 1712-1712.	1.4	0
33	Ratcheting between Two Distinct Conformations of Substrate Drives the Sequential Cleavage of Prothrombin by Prothrombinase Blood, 2004, 104, 1717-1717.	1.4	0
34	Human Platelets and Endothelial Cells Differentially Regulate the Pathway for Prothrombin Cleavage by Prothrombinase Blood, 2007, 110, 269-269.	1.4	0
35	Effects of Substrate Geometry on Active Site Engagement Govern the Preferential Action of Prothrombinase on One of the Two Cleavage Sites in Prothrombin Blood, 2008, 112, 2022-2022.	1.4	0
36	Fluorescence Resonance Energy Transfer Studies of Prothrombin Recognition by Prothrombinase Blood, 2008, 112, 2014-2014.	1.4	0

#	Article	IF	CITATIONS
37	Conformational Activation of Zymogen-Like Thrombin Variants by Tight Binding Ligands. Blood, 2008, 112, 3070-3070.	1.4	0
38	Driving Thrombin From a Protease-Like State to a Zymogen-Like State and Back Blood, 2009, 114, 852-852.	1.4	0
39	Heparin-Induced Thrombocytopenia Antibodies Inhibit PF4-Dependent Enhancement of Activated Protein C Formation by Binding to Antigenic Complexes Formed with the Chondroitin Sulfate Side-Chain of Thrombomodulin. Blood, 2010, 116, 721-721.	1.4	Ο
40	Meizothrombin: Zymogen or Proteinase? Slow, Ligand-Dependent Equilibration Between Equally Populated Zymogen-Like and Proteinase-Like Forms Explains Its Selectively Anticoagulant Function. Blood, 2011, 118, 533-533.	1.4	0
41	Conformational Dynamics of Prothrombin Dictate Its Ordered Cleavage by Prothrombinase. Blood, 2012, 120, 3359-3359.	1.4	Ο
42	X-Ray Structure of an Anticoagulant RNA Aptamer Bound to Factor Xa. Structural Basis for Its Ability to Disrupt Interactions Between Xa and Va within Prothrombinase. Blood, 2014, 124, 4232-4232.	1.4	0
43	A Proposed Role for Platelet Factor 4 in Histone Pathobiology in Sepsis. Blood, 2014, 124, 98-98.	1.4	Ο
44	New Structural Insights into High Affinity Membrane Binding By Coagulation Factor V/Va. Blood, 2014, 124, 4216-4216.	1.4	0
45	The Affinity of Factor X for the Intrinsic Xase Is Determined By Exosite Interactions Between the Substrate and the Enzyme Complex. Blood, 2015, 126, 1065-1065.	1.4	Ο
46	Assembly of Prothrombinase on Endothelial Cells: Receptor-Mediated or Phospholipid-Driven?. Blood, 2015, 126, 2267-2267.	1.4	0
47	A Novel Variant of Factor VIII Yields Cofactor Activity without Proteolysis between the A1 and A2 Domains, Blood, 2018, 132, 3771-3771	1.4	0