List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6608986/publications.pdf

Version: 2024-02-01

Ιονις-Sung Yu

#	Article	IF	CITATIONS
1	Biocompatible Core–Shell-Structured Si-Based NiO Nanoflowers and Their Anticancer Activity. Pharmaceutics, 2022, 14, 268.	2.0	5
2	Injectable hyaluronic acid hydrogel encapsulated with Si-based NiO nanoflower by visible light cross-linking: Its antibacterial applications. International Journal of Biological Macromolecules, 2022, 208, 149-158.	3.6	7
3	Titanium Monoxide with <i>in Situ</i> Grown Rutile TiO ₂ Nanothorns as a Heterostructured Job-Sharing Anode Material for Lithium-Ion Storage. ACS Applied Energy Materials, 2022, 5, 5691-5703.	2.5	5
4	Strained Pt(221) Facet in a PtCo@Pt-Rich Catalyst Boosts Oxygen Reduction and Hydrogen Evolution Activity. ACS Applied Materials & amp; Interfaces, 2022, 14, 25246-25256.	4.0	27
5	Progress in electrode and electrolyte materials: path to all-solid-state Li-ion batteries. Energy Advances, 2022, 1, 457-510.	1.4	36
6	A New TiO with in-Situ Transformed Rutile TiO ₂ Nanothorns As a Superb Anode Material for Lithium-Ion Battery. ECS Meeting Abstracts, 2022, MA2022-01, 318-318.	0.0	0
7	Controllable Synthesis of N-Doped Single-Layer Graphene-Coated Cobalt Nanoparticles for Efficient Oxygen Evolution. ECS Meeting Abstracts, 2022, MA2022-01, 1706-1706.	0.0	0
8	Ru-Loaded Graphitized Porous Carbon for High Performance Electrochemical Hydrogen Evolution. ECS Meeting Abstracts, 2022, MA2022-01, 1385-1385.	0.0	0
9	The identification of specific N-configuration responsible for Li-ion storage in N-doped porous carbon nanofibers: An ex-situ study. Journal of Power Sources, 2021, 483, 229174.	4.0	17
10	Self-Limiting Growth of Single-Layer N-Doped Graphene Encapsulating Nickel Nanoparticles for Efficient Hydrogen Production. ACS Applied Materials & amp; Interfaces, 2021, 13, 4294-4304.	4.0	16
11	Self-Templated Formation of Fluffy Graphene-Wrapped Ni ₅ P ₄ Hollow Spheres for Li-Ion Battery Anodes with High Cycling Stability. ACS Applied Materials & amp; Interfaces, 2021, 13, 23714-23723.	4.0	17
12	Black TiO _{2–<i>x</i>} Nanoparticles Decorated with Ni Nanoparticles and Trace Amounts of Pt Nanoparticles for Photocatalytic Hydrogen Generation. ACS Applied Nano Materials, 2021, 4, 4441-4451.	2.4	12
13	Single-Layer Graphene Coated-Metal Nanoparticles for Water Splitting. ECS Meeting Abstracts, 2021, MA2021-01, 470-470.	0.0	1
14	Highly bioactive and low cytotoxic Si-based NiOOH nanoflowers targeted against various bacteria, including MRSA, and their potential antibacterial mechanism. Journal of Industrial and Engineering Chemistry, 2021, 99, 264-270.	2.9	10
15	Controllable synthesis of single-layer graphene over cobalt nanoparticles and insight into active sites for efficient oxygen evolution. Journal of Materials Chemistry A, 2021, 9, 12060-12073.	5.2	9
16	Positive self-reconstruction in an FeNiMo phosphide electrocatalyst for enhanced overall water splitting. Sustainable Energy and Fuels, 2021, 5, 5789-5797.	2.5	5
17	Stable and sustainable photoanodes using zinc oxide and cobalt oxide chemically gradient nanostructures for water-splitting applications. Journal of Colloid and Interface Science, 2020, 558, 9-20.	5.0	20
18	Insight into the Boosted Electrocatalytic Oxygen Evolution Performance of Highly Hydrophilic Nickel–Iron Hydroxide. ACS Applied Energy Materials, 2020, 3, 822-830.	2.5	37

#	Article	IF	CITATIONS
19	High performance binder-free Fe–Ni hydroxides on nickel foam prepared in piranha solution for the oxygen evolution reaction. Sustainable Energy and Fuels, 2020, 4, 6311-6320.	2.5	14
20	Heterostructured Titanium Oxynitride-Manganese Cobalt Oxide Nanorods as High-Performance Electrode Materials for Supercapacitor Devices. ACS Applied Materials & Interfaces, 2020, 12, 54524-54536.	4.0	20
21	Sub 10 nm CoO nanoparticle-decorated graphitic carbon nitride for solar hydrogen generationviaefficient charge separation. Nanoscale Advances, 2020, 2, 4473-4481.	2.2	4
22	Single-Atom Iron-Based Electrocatalysts for High-Temperature Polymer Electrolyte Membrane Fuel Cell: Organometallic Precursor and Pore Texture Tailoring. ACS Applied Energy Materials, 2020, 3, 11164-11176.	2.5	14
23	Synergistic CoN-Decorated Pt Catalyst on Two-Dimensional Porous Co–N-Doped Carbon Nanosheet for Enhanced Oxygen Reduction Activity and Durability. ACS Applied Energy Materials, 2020, 3, 6310-6322.	2.5	18
24	Real-time monitored photocatalytic activity and electrochemical performance of an rGO/Pt nanocomposite synthesized <i>via</i> a green approach. RSC Advances, 2020, 10, 13722-13731.	1.7	13
25	TiO ₂ /ZrO ₂ Nanoparticle Composites for Electrochemical Hydrogen Evolution. ACS Applied Nano Materials, 2020, 3, 3634-3645.	2.4	35
26	Revisiting the Role of Conductivity and Polarity of Host Materials for Long‣ife Lithium–Sulfur Battery. Advanced Energy Materials, 2020, 10, 1903934.	10.2	52
27	New PtMg Alloy with Durable Electrocatalytic Performance for Oxygen Reduction Reaction in Proton Exchange Membrane Fuel Cell. ACS Energy Letters, 2020, 5, 1601-1609.	8.8	37
28	Novel Scalable Production of Single-Layer Graphene Coated-Metal Nanoparticles for Water Splitting. ECS Meeting Abstracts, 2020, MA2020-01, 1529-1529.	0.0	0
29	Tailor-Made Pt Catalysts with Improved Oxygen Reduction Reaction Stability/Durability. ACS Catalysis, 2019, 9, 8622-8645.	5.5	82
30	Efficient electrode material for electrochemical energy storage from organic waste. Journal of Solid State Electrochemistry, 2019, 23, 1481-1492.	1.2	3
31	Electron transfer interpretation of the biofilm-coated anode of a microbial fuel cell and the cathode modification effects on its power. Bioelectrochemistry, 2019, 127, 94-103.	2.4	16
32	A facile in-situ activation of protonated histidine-derived porous carbon for electrochemical capacitive energy storage. Journal of Industrial and Engineering Chemistry, 2019, 73, 316-327.	2.9	6
33	Silicon core-mesoporous shell carbon spheres as high stability lithium-ion battery anode. Journal of Colloid and Interface Science, 2019, 534, 47-54.	5.0	60
34	Mesopore Channel Length Control in Ordered Mesoporous Carbon Hosts for High Performance Lithium-Sulfur Batteries. Journal of the Electrochemical Society, 2019, 166, A5244-A5251.	1.3	11
35	Phase Diversity of Nickel Phosphides in Oxygen Reduction Catalysis. ChemElectroChem, 2018, 5, 1985-1994.	1.7	17
36	Three-dimensional spongy nanographene-functionalized silicon anodes for lithium ion batteries with superior cycling stability. Nano Research, 2018, 11, 233-245.	5.8	40

#	Article	IF	CITATIONS
37	Conjugated polyene-functionalized graphitic carbon nitride with enhanced photocatalytic water-splitting efficiency. Carbon, 2018, 129, 637-645.	5.4	42
38	Catalytic mechanism of graphene-nickel interface dipole layer for binder free electrochemical sensor applications. Communications Chemistry, 2018, 1, .	2.0	12
39	Fe–N-functionalized carbon electrocatalyst derived from a zeolitic imidazolate framework for oxygen reduction: Fe and NH ₃ treatment effects. Catalysis Science and Technology, 2018, 8, 5368-5381.	2.1	43
40	Iron Phosphide Incorporated into Ironâ€Treated Heteroatomsâ€Doped Porous Bioâ€Carbon as Efficient Electrocatalyst for the Oxygen Reduction Reaction. ChemElectroChem, 2018, 5, 1944-1953.	1.7	28
41	H-doped TiO2-x prepared with MgH2 for highly efficient solar-driven hydrogen production. Applied Catalysis B: Environmental, 2018, 237, 613-621.	10.8	41
42	Nonâ€Preciousâ€Metal Oxygen Reduction Reaction Electrocatalysis. ChemElectroChem, 2018, 5, 1743-1744.	1.7	5
43	Fe-Treated Heteroatom (S/N/B/P)-Doped Graphene Electrocatalysts for Water Oxidation. ACS Catalysis, 2017, 7, 2381-2391.	5.5	99
44	Nitrogen-Doped Porous Carbons from Ionic Liquids@MOF: Remarkable Adsorbents for Both Aqueous and Nonaqueous Media. ACS Applied Materials & Interfaces, 2017, 9, 10276-10285.	4.0	133
45	Efficient solar light photoreduction of CO2 to hydrocarbon fuels via magnesiothermally reduced TiO2 photocatalyst. Applied Catalysis B: Environmental, 2017, 215, 28-35.	10.8	88
46	Investigation of effects of non-homogenous deformation of gas diffusion layer in a PEM fuel cell. International Journal of Energy Research, 2017, 41, 2121-2137.	2.2	22
47	Synthesis of Water-Dispersible Single-Layer CoAl-Carbonate Layered Double Hydroxide. ACS Applied Materials & Interfaces, 2017, 9, 20294-20298.	4.0	38
48	Hydrogenated MoS ₂ QD-TiO ₂ heterojunction mediated efficient solar hydrogen production. Nanoscale, 2017, 9, 17029-17036.	2.8	58
49	Urine to highly porous heteroatom-doped carbons for supercapacitor: A value added journey for human waste. Scientific Reports, 2017, 7, 10910.	1.6	55
50	Active sites and factors influencing them for efficient oxygen reduction reaction in metal-N coordinated pyrolyzed and non-pyrolyzed catalysts: a review. Journal of Materials Chemistry A, 2017, 5, 20095-20119.	5.2	108
51	Visible light-induced photocatalytic degradation of gas-phase acetaldehyde with platinum/reduced titanium oxide-loaded carbon paper. RSC Advances, 2017, 7, 50693-50700.	1.7	12
52	Bicontinuous Spider Network Architecture of Free-Standing MnCoO <i>_X</i> @NCNF Anode for Li-Ion Battery. ACS Omega, 2017, 2, 7672-7681.	1.6	10
53	N-Carbon from Waste Tea as Efficient Anode Electrode Material in Lithium Ion Batteries. Journal of Nanoscience and Nanotechnology, 2017, 17, 1838-1846.	0.9	3
54	First-Principles Design of Graphene-Based Active Catalysts for Oxygen Reduction and Evolution Reactions in the Aprotic Li–O ₂ Battery. Journal of Physical Chemistry Letters, 2016, 7, 2803-2808.	2.1	52

#	Article	IF	CITATIONS
55	Morphologyâ€Tuned Synthesis of NiCo ₂ O ₄ â€Coated 3D Graphene Architectures Used as Binderâ€Free Electrodes for Lithiumâ€Ion Batteries. Chemistry - A European Journal, 2016, 22, 4422-4430.	1.7	54
56	Frontispiece: Morphologyâ€Tuned Synthesis of NiCo ₂ O ₄ â€Coated 3D Graphene Architectures Used as Binderâ€Free Electrodes for Lithiumâ€Ion Batteries. Chemistry - A European Journal, 2016, 22, .	1.7	0
57	Fabrication of Binder-Free Pencil-Trace Electrode for Lithium-Ion Battery: Simplicity and High Performance. Langmuir, 2016, 32, 4415-4423.	1.6	24
58	Iron–polypyrrole electrocatalyst with remarkable activity and stability for ORR in both alkaline and acidic conditions: a comprehensive assessment of catalyst preparation sequence. Journal of Materials Chemistry A, 2016, 4, 8645-8657.	5.2	90
59	Carbon Counter-Electrode-Based Quantum-Dot-Sensitized Solar Cells with Certified Efficiency Exceeding 11%. Journal of Physical Chemistry Letters, 2016, 7, 3103-3111.	2.1	169
60	Effect of pristine graphene incorporation on charge storage mechanism of three-dimensional graphene oxide: superior energy and power density retention. Scientific Reports, 2016, 6, 31555.	1.6	26
61	Rational design of common transition metal-nitrogen-carbon catalysts for oxygen reduction reaction in fuel cells. Nano Energy, 2016, 30, 443-449.	8.2	114
62	Oxygen-Deficient Zirconia (ZrO2â^'x): A New Material for Solar Light Absorption. Scientific Reports, 2016, 6, 27218.	1.6	250
63	Hierarchical Microcellular Microporous Carbon from Polyamic Acid Cryogel and its Electrochemical Capacitance. Energy Technology, 2016, 4, 278-287.	1.8	4
64	Evolution of the effect of sulfur confinement in graphene-based porous carbons for use in Li–S batteries. Nanoscale, 2016, 8, 4447-4451.	2.8	69
65	Synthesis and supercapacitor performance of Au-nanoparticle decorated MWCNT. Journal of Electroanalytical Chemistry, 2016, 761, 98-105.	1.9	30
66	Nitrogen-doped hollow carbon spheres with highly graphitized mesoporous shell: Role of Fe for oxygen evolution reaction. Applied Catalysis B: Environmental, 2016, 191, 202-208.	10.8	81
67	Superior pore network retention of carbon derived from naturally dried ginkgo leaves and its enhanced oxygen reduction performance. Catalysis Today, 2016, 260, 148-157.	2.2	31
68	Morphology-Tuned NiCo2O4-Coated 3D Graphene Rrchitectures As Binder-Free Electrode for Lithium Ion Battery. ECS Meeting Abstracts, 2016, , .	0.0	0
69	Iron-Polypyrrole Electrocatalyst with Remarkable Activity and Stability for Oxygen Reduction Reaction. ECS Meeting Abstracts, 2016, , .	0.0	0
70	Morphology-Tuned Synthesis of NiCo2O4-Coated 3D Graphene Architectures As Binder-Free Electrode for Lithium Ion Battery. ECS Meeting Abstracts, 2016, , .	0.0	0
71	Facile Synthesis of Hexagonal <scp>NiCo₂O₄</scp> Nanoplates as Highâ€Performance Anode Material for Liâ€Ion Batteries. Bulletin of the Korean Chemical Society, 2015, 36, 2330-2336.	1.0	18
72	Nitrogenâ€Doped Ordered Mesoporous Carbon with Different Morphologies for the Oxygen Reduction Reaction: Effect of Iron Species and Synergy of Textural Properties. ChemCatChem, 2015, 7, 2882-2890.	1.8	32

#	Article	IF	CITATIONS
73	Functionalized Agarose Selfâ€Healing Ionogels Suitable for Supercapacitors. ChemSusChem, 2015, 8, 3294-3303.	3.6	103
74	Efficient Hole Transporting Materials with Two or Four <i>N</i> , <i>N</i> â€Di(4â€methoxyphenyl)aminophenyl Arms on an Ethene Unit for Perovskite Solar Cells. Chemistry - A European Journal, 2015, 21, 15919-15923.	1.7	38
75	A new class of electroactive Fe- and P-functionalized graphene for oxygen reduction. Journal of Materials Chemistry A, 2015, 3, 11031-11039.	5.2	96
76	The role of iron in the preparation and oxygen reduction reaction activity of nitrogen-doped carbon. Chemical Communications, 2015, 51, 2450-2453.	2.2	69
77	Simple approach to advanced binder-free nitrogen-doped graphene electrode for lithium batteries. RSC Advances, 2015, 5, 3881-3887.	1.7	14
78	Fe–P: A New Class of Electroactive Catalyst for Oxygen Reduction Reaction. Journal of the American Chemical Society, 2015, 137, 3165-3168.	6.6	287
79	Nitrogen and phosphorus co-doped cubic ordered mesoporous carbon as a supercapacitor electrode material with extraordinary cyclic stability. Journal of Materials Chemistry A, 2015, 3, 18001-18009.	5.2	141
80	High capacity and exceptional cycling stability of ternary metal sulfide nanorods as Li ion battery anodes. Chemical Communications, 2015, 51, 13350-13353.	2.2	70
81	Green fabrication of 3-dimensional flower-shaped zinc glycerolate and ZnO microstructures for p-nitrophenol sensing. RSC Advances, 2015, 5, 37721-37728.	1.7	37
82	Graphene Nanoplatelets with Selectively Functionalized Edges as Electrode Material for Electrochemical Energy Storage. Langmuir, 2015, 31, 5676-5683.	1.6	33
83	A new approach to prepare highly active and stable black titania for visible light-assisted hydrogen production. Energy and Environmental Science, 2015, 8, 3539-3544.	15.6	332
84	New mesoporous silica/carbon composites byin situtransformation of silica template in carbon/silica nanocomposite. Journal of Experimental Nanoscience, 2014, 9, 221-229.	1.3	9
85	Seaweedâ€Đerived Heteroatomâ€Đoped Highly Porous Carbon as an Electrocatalyst for the Oxygen Reduction Reaction. ChemSusChem, 2014, 7, 1755-1763.	3.6	136
86	Surface Modification of Polypropylene Separators in Lithium-Ion Batteries Using Inductively Coupled Plasma Treatment. Journal of Nanoscience and Nanotechnology, 2014, 14, 9368-9372.	0.9	8
87	Cubeâ€ŀike αâ€Fe ₂ O ₃ Supported on Ordered Multimodal Porous Carbon as High Performance Electrode Material for Supercapacitors. ChemSusChem, 2014, 7, 3102-3111.	3.6	90
88	Highly efficient metal-free phosphorus-doped platelet ordered mesoporous carbon for electrocatalytic oxygen reduction. Carbon, 2014, 67, 736-743.	5.4	141
89	Transforming Hair into Heteroatomâ€Doped Carbon with High Surface Area. Small, 2014, 10, 2625-2636.	5.2	138
90	Nitrogen-Doped Carbon Nanoparticles by Flame Synthesis as Anode Material for Rechargeable Lithium-Ion Batteries. Langmuir, 2014, 30, 318-324.	1.6	225

#	Article	IF	CITATIONS
91	Iodine-treated heteroatom-doped carbon: conductivity driven electrocatalytic activity. Journal of Materials Chemistry A, 2014, 2, 18115-18124.	5.2	56
92	Synthesis of hollow TiO2@N-doped carbon with enhanced electrochemical capacitance by an in situ hydrothermal process using hexamethylenetetramine. Journal of Materials Chemistry A, 2014, 2, 11472.	5.2	51
93	Ordered multimodal porous carbon with hierarchical nanostructure as high performance electrode material for supercapacitors. RSC Advances, 2014, 4, 38931-38938.	1.7	12
94	Enhanced electrocatalytic activity due to additional phosphorous doping in nitrogen and sulfur-doped graphene: A comprehensive study. Carbon, 2014, 78, 257-267.	5.4	249
95	A highly efficient carbon-supported Pt electrocatalyst prepared by γ-irradiation for cathodic oxygen reduction. International Journal of Hydrogen Energy, 2014, 39, 1688-1697.	3.8	16
96	Preparation of Nitrogenâ€Doped Porous Carbon Nanofibers and the Effect of Porosity, Electrical Conductivity, and Nitrogen Content on Their Oxygen Reduction Performance. ChemCatChem, 2014, 6, 1236-1244.	1.8	40
97	N-Doped Hierarchical Hollow Mesoporous Carbon as Metal-Free Cathode for Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2014, 118, 16694-16702.	1.5	44
98	Activated carbon made from cow dung as electrode material for electrochemical double layer capacitor. Journal of Power Sources, 2014, 262, 224-231.	4.0	259
99	Heteroatom-doped highly porous carbon from human urine. Scientific Reports, 2014, 4, 5221.	1.6	119
100	High-performance quaternary PtRuIrNi electrocatalysts with hierarchical nanostructured carbon support. Journal of Catalysis, 2013, 306, 133-145.	3.1	24
101	Al nanorod thin films as anode electrode for Li ion rechargeable batteries. Electrochimica Acta, 2013, 87, 872-879.	2.6	41
102	Hierarchical Nanostructured Carbons with Meso–Macroporosity: Design, Characterization, and Applications. Accounts of Chemical Research, 2013, 46, 1397-1406.	7.6	358
103	Hematite (α-Fe2O3) nanoparticles on vulcan carbon as an ultrahigh capacity anode material in lithium ion battery. Electrochimica Acta, 2013, 114, 60-67.	2.6	54
104	High performance supercapacitor prepared from hollow mesoporous carbon capsules with hierarchical nanoarchitecture. Journal of Power Sources, 2013, 244, 799-805.	4.0	126
105	Morphology-Dependent Li Storage Performance of Ordered Mesoporous Carbon as Anode Material. Langmuir, 2013, 29, 6754-6761.	1.6	72
106	1-Dimensional porous α-Fe2O3 nanorods as high performance electrode material for supercapacitors. RSC Advances, 2013, 3, 25120.	1.7	92
107	Flame synthesis of 26-faceted maghemite polyhedrons grown via 14-faceted polyhedrons and their carbon composites for Li-ion battery application. CrystEngComm, 2012, 14, 7009.	1.3	22
108	Peroxidase mimic activity of hematiteiron oxides (α-Fe ₂ O ₃) with different nanostructures. Catalysis Science and Technology, 2012, 2, 119-124.	2.1	75

#	Article	IF	CITATIONS
109	Phosphorus-Doped Ordered Mesoporous Carbons with Different Lengths as Efficient Metal-Free Electrocatalysts for Oxygen Reduction Reaction in Alkaline Media. Journal of the American Chemical Society, 2012, 134, 16127-16130.	6.6	866
110	In Situ NMR Study on the Interaction between LiBH4–Ca(BH4)2 and Mesoporous Scaffolds. Journal of Physical Chemistry Letters, 2012, 3, 2922-2927.	2.1	23
111	Fabrication of hollow core carbon spheres with hierarchical nanoarchitecture for ultrahigh electrical charge storage. Journal of Materials Chemistry, 2012, 22, 19031.	6.7	112
112	Solvent controlled synthesis of new hematite superstructures with large coercive values. CrystEngComm, 2012, 14, 2024.	1.3	23
113	Topological Transformation of Thioether-Bridged Organosilicas into Nanostructured Functional Materials. Chemistry of Materials, 2012, 24, 2256-2264.	3.2	70
114	High Pt loading on functionalized multiwall carbon nanotubes as a highly efficient cathode electrocatalyst for proton exchange membrane fuel cells. Journal of Materials Chemistry, 2011, 21, 8066.	6.7	85
115	Enhanced Desorption and Absorption Properties of Eutectic LiBH ₄ –Ca(BH ₄) ₂ Infiltrated into Mesoporous Carbon. Journal of Physical Chemistry C, 2011, 115, 20027-20035.	1.5	48
116	Ultra-high Li storage capacity achieved by hollow carbon capsules with hierarchical nanoarchitecture. Journal of Materials Chemistry, 2011, 21, 19362.	6.7	75
117	In Situ Recrystallization of Silica Template for Synthesis of Novel Microporous ZSM-5/Hollow Mesoporous Carbon Composites. Industrial & Engineering Chemistry Research, 2011, 50, 7998-8005.	1.8	11
118	Facile synthesis of open mesoporous carbon nanofibers with tailored nanostructure as a highly efficient counter electrode in CdSe quantum-dot-sensitized solar cells. Journal of Materials Chemistry, 2011, 21, 8742.	6.7	132
119	A highly efficient synthesis approach of supported Pt-Ru catalyst for direct methanol fuel cell. Electrochimica Acta, 2010, 55, 4543-4550.	2.6	58
120	Combinatorial discovery of new methanol-tolerant non-noble metal cathode electrocatalysts for direct methanol fuel cells. Physical Chemistry Chemical Physics, 2010, 12, 15274.	1.3	15
121	Ordered multimodal porous carbon with hierarchical nanostructure for high Li storage capacity and good cycling performance. Journal of Materials Chemistry, 2010, 20, 10253.	6.7	119
122	Easy synthesis and characterization of single-crystalline hexagonal prism-shaped hematite α-Fe2O3 in aqueous media. CrystEngComm, 2009, 11, 2264.	1.3	50
123	HCl as a Key Parameter in Size-Tunable Synthesis of SBA-15 Silica with Rodlike Morphology. Journal of Nanoscience and Nanotechnology, 2009, 9, 527-532.	0.9	20
124	Electron spin resonance study of Mo(V) ion species incorporated into aluminosilicate nanospheres with solid core/mesoporous shell structure. Journal of Materials Science, 2009, 44, 5636-5643.	1.7	3
125	Homogeneous Deposition of Platinum Nanoparticles on Carbon Black for Proton Exchange Membrane Fuel Cell. Journal of the American Chemical Society, 2009, 131, 15330-15338.	6.6	277
126	Highly efficient Pt–Ru–Co–W quaternary anode catalysts for methanol electrooxidation discovered by combinatorial analysis. Journal of Materials Chemistry, 2009, 19, 6842.	6.7	26

#	Article	IF	CITATIONS
127	Novel ordered nanoporous graphitic C3N4as a support for Pt–Ru anode catalyst in direct methanol fuel cell. Journal of Materials Chemistry, 2007, 17, 1656-1659.	6.7	322
128	Synthesis of monodisperse spherical silica particles with solid core and mesoporous shell: mesopore channels perpendicular to the surface. Journal of Materials Chemistry, 2007, 17, 1758.	6.7	139
129	Adsorption and structural properties of mesoporous carbons obtained from mesophase pitch and phenol-formaldehyde carbon precursors using porous templates prepared from colloidal silica. Journal of Materials Chemistry, 2006, 16, 2819.	6.7	22
130	Highly efficient electrode catalysts prepared with ordered nanoporous carbons with tunable pore sizes as catalyst supports. Materials Research Society Symposia Proceedings, 2005, 876, 1.	0.1	0
131	Graphitized Pitch-Based Carbons with Ordered Nanopores Synthesized by Using Colloidal Crystals as Templates. Journal of the American Chemical Society, 2005, 127, 4188-4189.	6.6	252
132	Fabrication of Bimodal Porous Silicate with Silicalite-1 Core/Mesoporous Shell Structures and Synthesis of Nonspherical Carbon and Silica Nanocases with Hollow Core/Mesoporous Shell Structures. Journal of Physical Chemistry B, 2005, 109, 7040-7045.	1.2	84
133	SYNTHESIS AND PHOTOPHYSICAL PROPERTIES OF ERBIUM-INCLUDED MESOPOROUS MATERIALS FOR OPTICAL AMPLIFICATION. Journal of Nonlinear Optical Physics and Materials, 2004, 13, 497-501.	1.1	1
134	Spherical carbon capsules with hollow macroporous core and mesoporous shell structures as a highly efficient catalyst support in the direct methanol fuel cell. Chemical Communications, 2004, , 2766.	2.2	159
135	Fabrication and characterization of ordered macroporous PMS-derived SiC from a sacrificial template method. Journal of Materials Chemistry, 2004, 14, 1383.	6.7	57
136	Synthesis and characterization of spherical carbon and polymer capsules with hollow macroporous core and mesoporous shell structures. Microporous and Mesoporous Materials, 2003, 63, 1-9.	2.2	91
137	Template Synthesis of a New Mesostructured Silica from Highly Ordered Mesoporous Carbon Molecular Sieves. Chemistry of Materials, 2003, 15, 1932-1934.	3.2	66
138	Synthetic control of ordered and disordered arrays of carbon nanofibers from SBA-15 silica templatesElectronic supplementary information (ESI) available: Fig. S1: synthetic scheme for carbonization; Fig. S2: N2 isotherms; Fig. S3: experimental section and TGA data. See http://www.rsc.org/suppdata/cc/b3/b304227h/. Chemical Communications, 2003, , 1740.	2.2	31
139	Nanostructured Carbon Capsules with Hollow Core/Mesoporous Shell Structure. Materials Research Society Symposia Proceedings, 2002, 728, 8461.	0.1	0
140	Fabrication of macroporous SiC from templated preceramic polymers. Chemical Communications, 2002, , 1480-1481.	2.2	57
141	Fabrication of Ordered Uniform Porous Carbon Networks and Their Application to a Catalyst Supporter. Journal of the American Chemical Society, 2002, 124, 9382-9383.	6.6	484
142	Synthesis of highly ordered mesoporous polymer networks. Journal of Materials Chemistry, 2001, 11, 2912-2914.	6.7	83
143	Synthesis of highly ordered nanoporous carbon molecular sieves from silylated MCM-48 using divinylbenzene as precursor. Chemical Communications, 2001, , 559-560.	2.2	132
144	Template-Directed Synthesis of Nanoporous Carbons. Molecular Crystals and Liquid Crystals, 2001, 371, 107-110.	0.3	9

#	Article	IF	CITATIONS
145	Template synthesis of polymer-insulated colloidal gold nanowires with reactive ends. Chemical Communications, 2000, , 2445-2446.	2.2	49
146	Location of cupric ion and its adsorbate interactions in Cu(II)-exchanged mesoporous AlMCM-41 determined by electron spin resonance and electron spin echo modulation. Molecular Physics, 1998, 95, 989-997.	0.8	13