Takashi Kurogi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6608859/publications.pdf Version: 2024-02-01

TAKASHI KUDOCI

#	Article	IF	CITATIONS
1	A new and selective cycle for dehydrogenation of linear and cyclic alkanes under mild conditions using a base metal. Nature Chemistry, 2017, 9, 1126-1132.	13.6	57
2	A Terminally Bound Niobium Methylidyne. Journal of the American Chemical Society, 2016, 138, 4306-4309.	13.7	41
3	Molecular titanium nitrides: nucleophiles unleashed. Chemical Science, 2017, 8, 1209-1224.	7.4	35
4	Scrutinizing metal–ligand covalency and redox non-innocence <i>via</i> nitrogen K-edge X-ray absorption spectroscopy. Chemical Science, 2019, 10, 5044-5055.	7.4	29
5	Synthesis of titanium and zirconium complexes supported by a p-terphenoxide ligand and their reactions with N2, CO2 and CS2. Chemical Communications, 2013, 49, 11755.	4.1	26
6	Room-Temperature Ring-Opening of Quinoline, Isoquinoline, and Pyridine with Low-Valent Titanium. Journal of the American Chemical Society, 2017, 139, 12804-12814.	13.7	24
7	Room temperature olefination of methane with titanium–carbon multiple bonds. Chemical Science, 2018, 9, 3376-3385.	7.4	24
8	Methylidyne Transfer Reactions with Niobium. Organometallics, 2018, 37, 3385-3388.	2.3	24
9	A radical coupled pathway to a stable and terminally bound titanium methylidene. Chemical Communications, 2017, 53, 3412-3414.	4.1	21
10	1,2-CH Bond Activation of Pyridine across a Transient Titanium Alkylidene Radical and Re-Formation of the Tiâ∙CH ^t Bu Moiety. Organometallics, 2018, 37, 165-167.	2.3	20
11	Reduction of carbon monoxide by a tetrakis(aryloxide)diniobium complex having four bridging hydrides. Dalton Transactions, 2013, 42, 7510-7513.	3.3	16
12	Reactivity Studies of a Zirconium Methylidene Complex: Group Transfer and Methylenation Reactions. Organometallics, 2017, 36, 74-79.	2.3	16
13	Well-Defined Titanium Complex for Free-Radical and Cationic Photopolymerizations under Visible Light and Photoinduction of Ti-Based Nanoparticles. Macromolecules, 2019, 52, 3716-3729.	4.8	16
14	Multielectron reduction of diazoalkane and azides via reversible cyclometalation in ditantalum complexes. Chemical Communications, 2012, 48, 6809.	4.1	14
15	Formation and Redox Interconversion of Niobium Methylidene and Methylidyne Complexes. Angewandte Chemie - International Edition, 2016, 55, 6642-6645.	13.8	14
16	Insertion and reduction chemistry of isocyanide with a cyclometalated ditantalum hydride complex. Dalton Transactions, 2011, 40, 7701.	3.3	13
17	Selenolate Anion as an Organocatalyst: Reactions and Mechanistic Studies. Advanced Synthesis and Catalysis, 2018, 360, 1685-1692.	4.3	13
18	Metallo-Wittig chemistry of an alkylidene to form a terminal titanium oxo complex. Dalton Transactions, 2016, 45, 15894-15901.	3.3	12

Takashi Kurogi

#	Article	IF	CITATIONS
19	Polyhydrides of Sc, Zr and Hf and Their Proposed Formation Israel Journal of Chemistry, 2017, 57, 999-1009.	2.3	11
20	Divergent Pathways Involving 1,3â€Đipolar Addition and Nâ^'N Bond Splitting of an Organic Azide across a Zirconium Methylidene. Angewandte Chemie - International Edition, 2018, 57, 1978-1981.	13.8	11
21	Methylidyne Transfer as a Plausible Deactivation Pathway for Ynene Metathesis. Organometallics, 2020, 39, 4474-4478.	2.3	10
22	Birch Reduction of Arenes Using Sodium Dispersion and DMI under Mild Conditions. Chemistry Letters, 2022, 51, 38-40.	1.3	9
23	Reductive Ring Opening of Arylcyclopropanecarboxamides Accompanied by Borylation and Enolate Formation. Organic Letters, 2022, 24, 1105-1109.	4.6	9
24	Selenenate Anions (PhSeO ^{â^'}) as Organocatalyst: Synthesis of <i>trans</i> ‣tilbenes and a PPV Derivative. Advanced Synthesis and Catalysis, 2020, 362, 659-666.	4.3	8
25	Trimethylsilyl imide complexes of tantalum: Can the silyl group be eliminated?. Polyhedron, 2017, 125, 80-85.	2.2	6
26	Cyclization of 5-alkynones with chromium alkylidene equivalents generated <i>in situ</i> from <i>gem</i> -dichromiomethanes. Chemical Communications, 2020, 56, 9711-9714.	4.1	6
27	Neutral and Anionic Monomeric Zirconium Imides Prepared via Selective C=N Bond Cleavage of a Multidentate and Sterically Demanding βâ€Điketiminato Ligand. Chemistry - an Asian Journal, 2019, 14, 2629-2638.	3.3	5
28	A trinuclear chromium(iii) chlorocarbyne. Chemical Communications, 2021, 57, 5199-5202.	4.1	5
29	Chromium carbides and cyclopropenylidenes. Chemical Science, 2021, 12, 14281-14287.	7.4	5
30	Divergent Pathways Involving 1,3â€Dipolar Addition and Nâ^'N Bond Splitting of an Organic Azide across a Zirconium Methylidene. Angewandte Chemie, 2018, 130, 1996-1999.	2.0	4
31	Phosphorusâ€Atom Transfer from Phosphaethynolate to an Alkylidyne. Angewandte Chemie - International Edition, 2021, 60, 24411-24417.	13.8	4
32	Structural elucidation of a methylenation reagent of esters: synthesis and reactivity of a dinuclear titanium(<scp>iii</scp>) methylene complex. Chemical Science, 2021, 12, 3509-3515.	7.4	3
33	Nb Complexes. , 2021, , 299-374.		2
34	Formation and Redox Interconversion of Niobium Methylidene and Methylidyne Complexes. Angewandte Chemie, 2016, 128, 6754-6757.	2.0	1
35	Pâ€Atom Transfer from Phosphaethynolate to an Alkylidyne Angewandte Chemie, 0, , .	2.0	1
36	A Transmetallation Pathway to a Dinuclear Chromium μ-Methylene Complex. Chemistry Letters, 2022, 51, 525-528.	1.3	0