Ge-Ping Yin

List of Publications by Citations

Source: https://exaly.com/author-pdf/6608813/ge-ping-yin-publications-by-citations.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

62 15,162 108 346 h-index g-index citations papers 6.83 17,569 8.9 355 L-index avg, IF ext. papers ext. citations

#	Paper	IF	Citations
346	Understanding and approaches for the durability issues of Pt-based catalysts for PEM fuel cell. Journal of Power Sources, 2007 , 171, 558-566	8.9	926
345	Nitrogen-doped carbon nanostructures and their composites as catalytic materials for proton exchange membrane fuel cell. <i>Applied Catalysis B: Environmental</i> , 2008 , 79, 89-99	21.8	649
344	Carbonized nanoscale metal-organic frameworks as high performance electrocatalyst for oxygen reduction reaction. <i>ACS Nano</i> , 2014 , 8, 12660-8	16.7	456
343	Proton exchange membrane fuel cell from low temperature to high temperature: Material challenges. <i>Journal of Power Sources</i> , 2007 , 167, 235-242	8.9	425
342	Durability Study of Ptfl and PtflNTs Catalysts under Simulated PEM Fuel Cell Conditions. <i>Journal of the Electrochemical Society</i> , 2006 , 153, A1093	3.9	351
341	Effect of carbon black support corrosion on the durability of Pt/C catalyst. <i>Journal of Power Sources</i> , 2007 , 171, 331-339	8.9	343
340	Graphene Decorated with PtAu Alloy Nanoparticles: Facile Synthesis and Promising Application for Formic Acid Oxidation. <i>Chemistry of Materials</i> , 2011 , 23, 1079-1081	9.6	342
339	Polyelectrolyte-induced reduction of exfoliated graphite oxide: a facile route to synthesis of soluble graphene nanosheets. <i>ACS Nano</i> , 2011 , 5, 1785-91	16.7	274
338	Comparative investigation of the resistance to electrochemical oxidation of carbon black and carbon nanotubes in aqueous sulfuric acid solution. <i>Electrochimica Acta</i> , 2006 , 51, 5853-5857	6.7	272
337	Electrostatic self-assembly of a Pt-around-Au nanocomposite with high activity towards formic acid oxidation. <i>Angewandte Chemie - International Edition</i> , 2010 , 49, 2211-4	16.4	270
336	Superior performance of ordered macroporous TiNb2O7 anodes for lithium ion batteries: Understanding from the structural and pseudocapacitive insights on achieving high rate capability. <i>Nano Energy</i> , 2017 , 34, 15-25	17.1	264
335	Evaluation of ZnO nanorod arrays with dandelion-like morphology as negative electrodes for lithium-ion batteries. <i>Electrochimica Acta</i> , 2009 , 54, 2851-2855	6.7	214
334	Understanding undesirable anode lithium plating issues in lithium-ion batteries. <i>RSC Advances</i> , 2016 , 6, 88683-88700	3.7	204
333	Ultrahigh stable carbon riveted Pt/TiO2© catalyst prepared by in situ carbonized glucose for proton exchange membrane fuel cell. <i>Energy and Environmental Science</i> , 2011 , 4, 728-735	35.4	170
332	Three dimensional N-doped graphene/PtRu nanoparticle hybrids as high performance anode for direct methanol fuel cells. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 3719	13	165
331	Recent progress in nanostructured electrocatalysts for PEM fuel cells. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 4631	13	157
330	ZIF-8 with Ferrocene Encapsulated: A Promising Precursor to Single-Atom Fe Embedded Nitrogen-Doped Carbon as Highly Efficient Catalyst for Oxygen Electroreduction. <i>Small</i> , 2018 , 14, e170	4282	148

(2015-2010)

329	Nanosized core/shell silicon@carbon anode material for lithium ion batteries with polyvinylidene fluoride as carbon source. <i>Journal of Materials Chemistry</i> , 2010 , 20, 3216		146	
328	Carbon nanotubes decorated with Pt nanoparticles via electrostatic self-assembly: a highly active oxygen reduction electrocatalyst. <i>Journal of Materials Chemistry</i> , 2010 , 20, 2826		144	
327	Radially Oriented Single-Crystal Primary Nanosheets Enable Ultrahigh Rate and Cycling Properties of LiNi0.8Co0.1Mn0.1O2 Cathode Material for Lithium-Ion Batteries. <i>Advanced Energy Materials</i> , 2019 , 9, 1803963	21.8	143	
326	Nanoporous PdNi Alloy Nanowires As Highly Active Catalysts for the Electro-Oxidation of Formic Acid. <i>ACS Applied Materials & Interfaces</i> , 2011 , 3, 105-9	9.5	131	
325	Investigation of Further Improvement of Platinum Catalyst Durability with Highly Graphitized Carbon Nanotubes Support. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 5784-5789	3.8	120	
324	Pseudocapacitive Li+ intercalation in porous Ti2Nb10O29 nanospheres enables ultra-fast lithium storage. <i>Energy Storage Materials</i> , 2018 , 11, 57-66	19.4	119	
323	Facile synthesis of PtAu alloy nanoparticles with high activity for formic acid oxidation. <i>Journal of Power Sources</i> , 2010 , 195, 1103-1106	8.9	119	
322	Fabrication of CuO film with network-like architectures through solution-immersion and their application in lithium ion batteries. <i>Journal of Power Sources</i> , 2007 , 167, 206-211	8.9	115	
321	Advanced catalyst supports for PEM fuel cell cathodes. <i>Nano Energy</i> , 2016 , 29, 314-322	17.1	114	
320	NitrogenBoped graphitized carbon shell encapsulated NiFe nanoparticles: A highly durable oxygen evolution catalyst. <i>Nano Energy</i> , 2017 , 39, 245-252	17.1	109	
319	Multi-walled carbon nanotubes based Pt electrodes prepared with in situ ion exchange method for oxygen reduction. <i>Journal of Power Sources</i> , 2006 , 161, 47-53	8.9	108	
318	High-rate capability of three-dimensionally ordered macroporous T-Nb2O5 through Li+intercalation pseudocapacitance. <i>Journal of Power Sources</i> , 2017 , 361, 80-86	8.9	106	
317	Effects of temperature on charge/discharge behaviors of LiFePO4 cathode for Li-ion batteries. <i>Electrochimica Acta</i> , 2012 , 60, 269-273	6.7	103	
316	Fluoroethylene carbonate as electrolyte additive to improve low temperature performance of LiFePO4 electrode. <i>Electrochimica Acta</i> , 2013 , 87, 466-472	6.7	100	
315	Surface regulation enables high stability of single-crystal lithium-ion cathodes at high voltage. <i>Nature Communications</i> , 2020 , 11, 3050	17.4	97	
314	Facile synthesis of nanostructured TiNb2O7 anode materials with superior performance for high-rate lithium ion batteries. <i>Chemical Communications</i> , 2015 , 51, 17293-6	5.8	96	
313	Carbon riveted microcapsule Pt/MWCNTs-TiO2catalyst prepared by in situ carbonized glucose with ultrahigh stability for proton exchange membrane fuel cell. <i>Energy and Environmental Science</i> , 2011 , 4, 2558	35.4	94	
312	Lithium-rich Li1.2Ni0.13Co0.13Mn0.54O2 oxide coated by Li3PO4 and carbon nanocomposite layers as high performance cathode materials for lithium ion batteries. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 2634-2641	13	92	

311	Improved electrochemical performance of micro-sized SiO-based composite anode by prelithiation of stabilized lithium metal powder. <i>Journal of Power Sources</i> , 2017 , 347, 170-177	8.9	91
310	High loading single-atom Cu dispersed on graphene for efficient oxygen reduction reaction. <i>Nano Energy</i> , 2019 , 66, 104088	17.1	88
309	Self-assembly of Pt nanoparticles on highly graphitized carbon nanotubes as an excellent oxygen-reduction catalyst. <i>Applied Catalysis B: Environmental</i> , 2011 , 102, 372-377	21.8	84
308	Interface Issues and Challenges in All-Solid-State Batteries: Lithium, Sodium, and Beyond. <i>Advanced Materials</i> , 2021 , 33, e2000721	24	84
307	Enabling reliable lithium metal batteries by a bifunctional anionic electrolyte additive. <i>Energy Storage Materials</i> , 2018 , 11, 197-204	19.4	82
306	Stabilization of platinum nanoparticle electrocatalysts for oxygen reduction using poly(diallyldimethylammonium chloride). <i>Journal of Materials Chemistry</i> , 2009 , 19, 7995		82
305	Flower-like CuO film-electrode for lithium ion batteries and the effect of surface morphology on electrochemical performance. <i>Electrochimica Acta</i> , 2007 , 53, 951-956	6.7	81
304	Ethanol-assisted hydrothermal synthesis of LiNi0.5Mn1.5O4 with excellent long-term cyclability at high rate for lithium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 4185-4191	13	80
303	Oxygen vacancies in SnO2 surface coating to enhance the activation of layered Li-Rich Li1.2Mn0.54Ni0.13Co0.13O2 cathode material for Li-ion batteries. <i>Journal of Power Sources</i> , 2016 , 331, 91-99	8.9	75
302	Electrocatalytic valorisation of biomass derived chemicals. <i>Catalysis Science and Technology</i> , 2018 , 8, 3216-3232	5.5	73
301	Unravelling the origin of irreversible capacity loss in NaNiO2 for high voltage sodium ion batteries. <i>Nano Energy</i> , 2017 , 34, 215-223	17.1	69
300	Facile fabrication of a nanoporous silicon electrode with superior stability for lithium ion batteries. <i>Energy and Environmental Science</i> , 2011 , 4, 1037	35.4	69
299	Ti-Based Oxide Anode Materials for Advanced Electrochemical Energy Storage: Lithium/Sodium Ion Batteries and Hybrid Pseudocapacitors. <i>Small</i> , 2019 , 15, e1904740	11	69
298	Capacity fading mechanism during long-term cycling of over-discharged LiCoO2/mesocarbon microbeads battery. <i>Journal of Power Sources</i> , 2015 , 293, 1006-1015	8.9	67
297	High-performance LiFePO4 cathode material from FePO4 microspheres with carbon nanotube networks embedded for lithium ion batteries. <i>Journal of Power Sources</i> , 2013 , 223, 100-106	8.9	67
296	A Mild Surface Washing Method Using Protonated Polyaniline for Ni-rich LiNi0.8Co0.1Mn0.1O2 Material of Lithium Ion Batteries. <i>Electrochimica Acta</i> , 2017 , 248, 534-540	6.7	67
295	Micro-sized spherical silicon@carbon@graphene prepared by spray drying as anode material for lithium-ion batteries. <i>Journal of Alloys and Compounds</i> , 2017 , 723, 434-440	5.7	67
294	A two-dimensional nitrogen-rich carbon/silicon composite as high performance anode material for lithium ion batteries. <i>Chemical Engineering Journal</i> , 2018 , 341, 37-46	14.7	66

293	Facilitating the redox reaction of polysulfides by an electrocatalytic layer-modified separator for lithiumBulfur batteries. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 10936-10945	13	65
292	An Li-rich oxide cathode material with mosaic spinel grain and a surface coating for high performance Li-ion batteries. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 15640	13	65
291	Multi-stress factor model for cycle lifetime prediction of lithium ion batteries with shallow-depth discharge. <i>Journal of Power Sources</i> , 2015 , 279, 123-132	8.9	65
290	Boron-doped graphene as promising support for platinum catalyst with superior activity towards the methanol electrooxidation reaction. <i>Journal of Power Sources</i> , 2015 , 300, 245-253	8.9	64
289	Carbon nanotubes supported PtAu catalysts for methanol-tolerant oxygen reduction reaction: A comparison between Pt/Au and PtAu nanoparticles. <i>Journal of Power Sources</i> , 2009 , 194, 668-673	8.9	64
288	Achieving long-life Prussian blue analogue cathode for Na-ion batteries via triple-cation lattice substitution and coordinated water capture. <i>Nano Energy</i> , 2019 , 61, 201-210	17.1	63
287	Highly efficient and stable nonplatinum anode catalyst with Au@Pd coreBhell nanostructures for methanol electrooxidation. <i>Journal of Catalysis</i> , 2012 , 295, 217-222	7.3	63
286	A novel CNT@SnO2 coreTheath nanocomposite as a stabilizing support for catalysts of proton exchange membrane fuel cells. <i>Electrochemistry Communications</i> , 2009 , 11, 496-498	5.1	62
285	Ab initio investigations of the electric field dependence of the geometric and electronic structures of molecular wires. <i>Journal of Physical Chemistry A</i> , 2006 , 110, 11130-5	2.8	62
284	Pd nanoparticles deposited on vertically aligned carbon nanotubes grown on carbon paper for formic acid oxidation. <i>International Journal of Hydrogen Energy</i> , 2009 , 34, 8270-8275	6.7	61
283	Polyaniline-encapsulated silicon on three-dimensional carbon nanotubes foam with enhanced electrochemical performance for lithium-ion batteries. <i>Journal of Power Sources</i> , 2018 , 381, 156-163	8.9	60
282	Electrochemical stability of silicon/carbon composite anode for lithium ion batteries. <i>Electrochimica Acta</i> , 2007 , 52, 4878-4883	6.7	59
281	Iodine-doped sulfurized polyacrylonitrile with enhanced electrochemical performance for room-temperature sodium/potassium sulfur batteries. <i>Chemical Communications</i> , 2019 , 55, 5267-5270	5.8	58
280	Modification of Nafion membrane using fluorocarbon surfactant for all vanadium redox flow battery. <i>Journal of Membrane Science</i> , 2015 , 476, 20-29	9.6	57
279	Covalently-functionalizing synthesis of Si@C coreEhell nanocomposites as high-capacity anode materials for lithium-ion batteries. <i>Journal of Materials Chemistry</i> , 2011 , 21, 15692		57
278	Improved electrochemical performance and capacity fading mechanism of nano-sized LiMn0.9Fe0.1PO4 cathode modified by polyacene coating. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 150	6 ⁵³ 157	9 ⁵⁵
277	Al2O3 Coated Concentration-Gradient Li[Ni0.73Co0.12Mn0.15]O2 Cathode Material by Freeze Drying for Long-Life Lithium Ion Batteries. <i>Electrochimica Acta</i> , 2015 , 174, 1185-1191	6.7	54
276	Palladium nanocrystals-imbedded mesoporous hollow carbon spheres with enhanced electrochemical kinetics for high performance lithium sulfur batteries. <i>Carbon</i> , 2019 , 143, 878-889	10.4	54

275	Synergistic engineering of defects and architecture in Co3O4@C nanosheets toward Li/Na ion batteries with enhanced pseudocapacitances. <i>Nano Energy</i> , 2020 , 78, 105366	17.1	53
274	A novel Pt/Au/C cathode catalyst for direct methanol fuel cells with simultaneous methanol tolerance and oxygen promotion. <i>Electrochemistry Communications</i> , 2008 , 10, 831-834	5.1	52
273	Electronically Conductive Sb-doped SnO 2 Nanoparticles Coated LiNi 0.8 Co 0.15 Al 0.05 O 2 Cathode Material with Enhanced Electrochemical Properties for Li-ion Batteries. <i>Electrochimica Acta</i> , 2017 , 236, 273-279	6.7	50
272	Pd-around-CeO2N hybrid nanostructure catalyst: three-phase-transfer synthesis, electrocatalytic properties and dual promoting mechanism. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 1429-1435	13	50
271	Free-Standing Sandwich-Type Graphene/Nanocellulose/Silicon Laminar Anode for Flexible Rechargeable Lithium Ion Batteries. <i>ACS Applied Materials & District Materials</i> (10), 29638-29646	9.5	48
270	Conformational analysis of diphenylacetylene under the influence of an external electric field. <i>Physical Chemistry Chemical Physics</i> , 2007 , 9, 1186-93	3.6	48
269	Active and Stable PtNi Alloy Octahedra Catalyst for Oxygen Reduction via Near-Surface Atomical Engineering. <i>ACS Catalysis</i> , 2020 , 10, 4205-4214	13.1	47
268	A facile strategy to prepare nano-crystalline Li4Ti5O12/C anode material via polyvinyl alcohol as carbon source for high-rate rechargeable Li-ion batteries. <i>Electrochimica Acta</i> , 2013 , 93, 173-178	6.7	47
267	1,3,6-Hexanetricarbonitrile as electrolyte additive for enhancing electrochemical performance of high voltage Li-rich layered oxide cathode. <i>Journal of Power Sources</i> , 2017 , 361, 227-236	8.9	47
266	Effect of a Carbon Support Containing Large Mesopores on the Performance of a PtRuNi/C Catalyst for Direct Methanol Fuel Cells. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 672-677	3.8	47
265	Understanding the initial irreversibility of metal sulfides for sodium-ion batteries via operando techniques. <i>Nano Energy</i> , 2018 , 43, 184-191	17.1	46
264	Boron, nitrogen co-doped graphene: a superior electrocatalyst support and enhancing mechanism for methanol electrooxidation. <i>Electrochimica Acta</i> , 2016 , 212, 313-321	6.7	45
263	Investigation on performance of Pd/Al2O3L catalyst synthesized by microwave assisted polyol process for electrooxidation of formic acid. <i>RSC Advances</i> , 2012 , 2, 344-350	3.7	44
262	The effects of LiBOB additive for stable SEI formation of PP13TFSI-organic mixed electrolyte in lithium ion batteries. <i>Electrochimica Acta</i> , 2011 , 56, 4841-4848	6.7	44
261	Low-cost and durable catalyst support for fuel cells: Graphite submicronparticles. <i>Journal of Power Sources</i> , 2010 , 195, 457-460	8.9	44
260	State of health diagnosis model for lithium ion batteries based on real-time impedance and open circuit voltage parameters identification method. <i>Energy</i> , 2018 , 144, 647-656	7.9	44
259	Polyelectrolyte assisted synthesis and enhanced oxygen reduction activity of Pt nanocrystals with controllable shape and size. <i>ACS Applied Materials & Distributed Materials </i>	9.5	43
258	Improving electrochemical performance of NiO films by electrodeposition on foam nickel substrates. <i>Journal of Applied Electrochemistry</i> , 2009 , 39, 1597-1602	2.6	43

(2013-2012)

257	Effects of fluoroethylene carbonate on low temperature performance of mesocarbon microbeads anode. <i>Electrochimica Acta</i> , 2012 , 74, 260-266	6.7	42	
256	Role of Pt-pyridinic nitrogen sites in methanol oxidation on Pt/polypyrrole-carbon black Catalyst. <i>Journal of Power Sources</i> , 2012 , 197, 44-49	8.9	41	
255	Electrochemical durability investigation of single-walled and multi-walled carbon nanotubes under potentiostatic conditions. <i>Journal of Power Sources</i> , 2008 , 176, 128-131	8.9	41	
254	Enhancement of high voltage cycling performance and thermal stability of LiNi1/3Co1/3Mn1/3O2 cathode by use of boron-based additives. <i>Solid State Ionics</i> , 2014 , 263, 146-151	3.3	40	
253	Investigations of Compositions and Performance of PtRuMo/C Ternary Catalysts for Methanol Electrooxidation. <i>Fuel Cells</i> , 2009 , 9, 106-113	2.9	40	
252	Insights into interfacial effect and local lithium-ion transport in polycrystalline cathodes of solid-state batteries. <i>Nature Communications</i> , 2020 , 11, 5700	17.4	40	
251	A three-dimensional silicon/nitrogen-doped graphitized carbon composite as high-performance anode material for lithium ion batteries. <i>Journal of Alloys and Compounds</i> , 2019 , 777, 190-197	5.7	40	
250	Influence of fluoroethylene carbonate as co-solvent on the high-voltage performance of LiNi1/3Co1/3Mn1/3O2 cathode for lithium-ion batteries. <i>Electrochimica Acta</i> , 2016 , 191, 8-15	6.7	39	
249	Iron sulfide/carbon hybrid cluster as an anode for potassium-ion storage. <i>Journal of Alloys and Compounds</i> , 2018 , 766, 1086-1091	5.7	39	
248	Ni-MOF derived NiO/C nanospheres grown in situ on reduced graphene oxide towards high performance hybrid supercapacitor. <i>Journal of Alloys and Compounds</i> , 2019 , 801, 158-165	5.7	38	
247	Progressive concentration gradient nickel-rich oxide cathode material for high-energy and long-life lithium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 7728-7735	13	38	
246	Polyvinylpyrrolidone-Coordinated Single-Site Platinum Catalyst Exhibits High Activity for Hydrogen Evolution Reaction. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 15902-15907	16.4	38	
245	Oxygen Reduction Kinetics on Pt Monolayer Shell Highly Affected by the Structure of Bimetallic AuNi Cores. <i>Chemistry of Materials</i> , 2016 , 28, 5274-5281	9.6	38	
244	Pt decorated Ti3C2 MXene for enhanced methanol oxidation reaction. <i>Ceramics International</i> , 2019 , 45, 2411-2417	5.1	38	
243	Hierarchical ordered macroporous/ultrathin mesoporous carbon architecture: A promising cathode scaffold with excellent rate performance for rechargeable Li-O2 batteries. <i>Carbon</i> , 2017 , 118, 139-147	10.4	37	
242	Hydrothermal-assisted sol-gel synthesis of Li4Ti5O12/C nano-composite for high-energy lithium-ion batteries. <i>Solid State Ionics</i> , 2013 , 244, 52-56	3.3	37	
241	Changes of Degradation Mechanisms of LiFePO4/Graphite Batteries Cycled at Different Ambient Temperatures. <i>Electrochimica Acta</i> , 2017 , 237, 248-258	6.7	36	
240	Ascorbic acid-assisted solvothermal synthesis of LiMn 0.9 Fe 0.1 PO 4 /C nanoplatelets with enhanced electrochemical performance for lithium ion batteries. <i>Journal of Power Sources</i> , 2013 , 243, 872-879	8.9	36	

239	Changing of SEI Film and Electrochemical Properties about MCMB Electrodes during Long-Term Charge/Discharge Cycles. <i>Journal of the Electrochemical Society</i> , 2013 , 160, A2093-A2099	3.9	36
238	Simple annealing process for performance improvement of silicon anode based on polyvinylidene fluoride binder. <i>Journal of Power Sources</i> , 2010 , 195, 2069-2073	8.9	36
237	Unravelling the Interface Layer Formation and Gas Evolution/Suppression on a TiNbO Anode for Lithium-Ion Batteries. <i>ACS Applied Materials & District Research</i> , 10, 27056-27062	9.5	35
236	Degradation mechanism of LiCoO2/mesocarbon microbeads battery based on accelerated aging tests. <i>Journal of Power Sources</i> , 2014 , 268, 816-823	8.9	35
235	Pt/Tin Oxide/Carbon Nanocomposites as Promising Oxygen Reduction Electrocatalyst with Improved Stability and Activity. <i>Electrochimica Acta</i> , 2014 , 117, 413-419	6.7	35
234	A dual-salt coupled fluoroethylene carbonate succinonitrile-based electrolyte enables Li-metal batteries. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 2066-2073	13	35
233	Structural Distortion Induced by Manganese Activation in a Lithium-Rich Layered Cathode. <i>Journal of the American Chemical Society</i> , 2020 , 142, 14966-14973	16.4	35
232	Bifunctional LaMnCoO Perovskite Oxide Catalyst for Oxygen Reduction and Evolution Reactions: The Optimized e Electronic Structures by Manganese Dopant. <i>ACS Applied Materials & amp; Interfaces</i> , 2020 , 12, 24717-24725	9.5	34
231	A novel nanoporous Fe-doped lithium manganese phosphate material with superior long-term cycling stability for lithium-ion batteries. <i>Nanoscale</i> , 2015 , 7, 11509-14	7.7	34
230	Metal-Organic Coordination Networks: Prussian Blue and Its Synergy with Pt Nanoparticles to Enhance Oxygen Reduction Kinetics. <i>ACS Applied Materials & District Research</i> , 8, 15250-7	9.5	33
229	Ultra-thin polytetrafluoroethene/Nafion/silica composite membrane with high performance for vanadium redox flow battery. <i>Journal of Power Sources</i> , 2014 , 272, 113-120	8.9	33
228	Phosphorus-doped graphene support to enhance electrocatalysis of methanol oxidation reaction on platinum nanoparticles. <i>Chemical Physics Letters</i> , 2017 , 687, 1-8	2.5	33
227	Clew-like N-doped multiwalled carbon nanotube aggregates derived from metal-organic complexes for lithium-sulfur batteries. <i>Carbon</i> , 2017 , 122, 635-642	10.4	33
226	Engineering of Nitrogen Coordinated Single Cobalt Atom Moieties for Oxygen Electroreduction. <i>ACS Applied Materials & Discrete Section</i> , 11, 41258-41266	9.5	32
225	PtBGOIIiO2 nanocomposite by UV-photoreduction method as promising electrocatalyst for methanol oxidation. <i>International Journal of Hydrogen Energy</i> , 2013 , 38, 12310-12317	6.7	32
224	Theoretical investigations of oligo(phenylene ethylene) molecular wire: Effects from substituents and external electric field. <i>Computational Materials Science</i> , 2007 , 39, 775-781	3.2	32
223	A New Anion Receptor for Improving the Interface between Lithium- and Manganese-Rich Layered Oxide Cathode and the Electrolyte. <i>Chemistry of Materials</i> , 2017 , 29, 2141-2149	9.6	31
222	Enhancing electrochemical detection of dopamine via dumbbell-like FePt-FeO nanoparticles. Nanoscale, 2017, 9, 1022-1027	7.7	31

(2006-2019)

221	Amorphous carbon-encapsulated Si nanoparticles loading on MCMB with sandwich structure for lithium ion batteries. <i>Electrochimica Acta</i> , 2019 , 306, 590-598	6.7	31
220	The Enhanced CO Tolerance of Platinum Supported on FeP Nanosheet for Superior Catalytic Activity Toward Methanol Oxidation. <i>Electrochimica Acta</i> , 2017 , 254, 36-43	6.7	31
219	Enhancement of low-temperature performance of LiFePO4 electrode by butyl sultone as electrolyte additive. <i>Solid State Ionics</i> , 2014 , 254, 27-31	3.3	31
218	Surface Structure Dependent Electro-oxidation of Dimethyl Ether on Platinum Single-Crystal Electrodes. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 18836-18838	3.8	31
217	Superior catalytic performance and CO tolerance of Ru@Pt/C-TiO2 electrocatalyst toward methanol oxidation reaction. <i>Applied Surface Science</i> , 2019 , 473, 943-950	6.7	31
216	The effect of elevated temperature on the accelerated aging of LiCoO2/mesocarbon microbeads batteries. <i>Applied Energy</i> , 2016 , 177, 1-10	10.7	30
215	Pseudocapacitive Li+ storage boosts ultrahigh rate performance of structure-tailored CoFe2O4@Fe2O3 hollow spheres triggered by engineered surface and near-surface reactions. <i>Nano Energy</i> , 2019 , 66, 104179	17.1	30
214	Nickel-doped ceria nanoparticles for promoting catalytic activity of Pt/C for ethanol electrooxidation. <i>Journal of Power Sources</i> , 2014 , 263, 310-314	8.9	30
213	SilMn composite anodes for lithium ion batteries. <i>Journal of Alloys and Compounds</i> , 2006 , 414, 265-268	5.7	30
212	Electrochemical performance degeneration mechanism of LiCoO2 with high state of charge during long-term charge/discharge cycling. <i>RSC Advances</i> , 2015 , 5, 81235-81242	3.7	29
211	Lithium Phosphorus Oxynitride Coated Concentration Gradient Li[Ni0.73Co0.12Mn0.15]O2 Cathode Material with Enhanced Electrochemical Properties. <i>Electrochimica Acta</i> , 2016 , 192, 340-345	6.7	29
21 0	Anisotropically Electrochemical-Mechanical Evolution in Solid-State Batteries and Interfacial Tailored Strategy. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 18647-18653	16.4	29
209	Lithium deposition on graphite anode during long-term cycles and the effect on capacity loss. <i>RSC Advances</i> , 2014 , 4, 26335-26341	3.7	29
208	Synthesis and electrochemical performance of Si/Cu and Si/Cu/graphite composite anode. <i>Materials Chemistry and Physics</i> , 2007 , 104, 444-447	4.4	29
207	A Novel One-dimensional Reduced Graphene Oxide/Sulfur Nanoscroll Material and its Application in Lithium Sulfur Batteries. <i>Electrochimica Acta</i> , 2016 , 222, 1861-1869	6.7	29
206	Mild Synthesis of Pt/SnO2 /Graphene Nanocomposites with Remarkably Enhanced Ethanol Electro-oxidation Activity and Durability. <i>Chemistry - A European Journal</i> , 2016 , 22, 193-8	4.8	29
205	Pt nanoparticles supported by sulfur and phosphorus co-doped graphene as highly active catalyst for acidic methanol electrooxidation. <i>Electrochimica Acta</i> , 2018 , 285, 202-213	6.7	28
204	In Situ Deposition of Highly Dispersed Pt Nanoparticles on Carbon Black Electrode for Oxygen Reduction. <i>Journal of the Electrochemical Society</i> , 2006 , 153, A1261	3.9	28

203	Ultra-low Pt decorated PdFe Alloy Nanoparticles for Formic Acid Electro-oxidation. <i>Electrochimica Acta</i> , 2016 , 217, 203-209	6.7	28
202	Triphenyl phosphite as an electrolyte additive to improve the cyclic stability of lithium-rich layered oxide cathode for lithium-ion batteries. <i>Electrochimica Acta</i> , 2016 , 216, 44-50	6.7	27
201	Self-doping Ti1-xNb2+xO7 anode material for lithium-ion battery and its electrochemical performance. <i>Journal of Alloys and Compounds</i> , 2017 , 728, 534-540	5.7	27
2 00	Effects of carbon on the structure and electrochemical performance of Li2FeSiO4 cathode materials for lithium-ion batteries. <i>RSC Advances</i> , 2012 , 2, 6994	3.7	27
199	Unravelling the Enhanced High-Temperature Performance of Lithium-Rich Oxide Cathode with Methyl Diphenylphosphinite as Electrolyte Additive. <i>ChemElectroChem</i> , 2018 , 5, 1569-1575	4.3	26
198	Lithium compound deposition on mesocarbon microbead anode of lithium ion batteries after long-term cycling. <i>ACS Applied Materials & Discrete Solution (Control of the Control of the Cont</i>	9.5	26
197	Inducing uniform lithium nucleation by integrated lithium-rich li-in anode with lithiophilic 3D framework. <i>Energy Storage Materials</i> , 2020 , 33, 423-431	19.4	26
196	Selective Surface Engineering of Heterogeneous Nanostructures: In Situ Unraveling of the Catalytic Mechanism on PtAu Catalyst. <i>ACS Catalysis</i> , 2017 , 7, 7923-7929	13.1	25
195	Low-Temperature Solution Synthesis of Black Phosphorus from Red Phosphorus: Crystallization Mechanism and Lithium Ion Battery Applications. <i>Journal of Physical Chemistry Letters</i> , 2020 , 11, 2708-2	2718	25
194	Facile synthesis of binder-free reduced graphene oxide/silicon anode for high-performance lithium ion batteries. <i>Journal of Power Sources</i> , 2016 , 312, 216-222	8.9	25
193	Trimetallic Pt P d N i octahedral nanocages with subnanometer thick-wall towards high oxygen reduction reaction. <i>Nano Energy</i> , 2019 , 64, 103890	17.1	25
192	Unraveling the Origins of the Inreactive Corelin Conversion Electrodes to Trigger High Sodium-Ion Electrochemistry. <i>ACS Energy Letters</i> , 2019 , 4, 2007-2012	20.1	25
191	Effect of Se in Co-based selenides towards oxygen reduction electrocatalytic activity. <i>Journal of Power Sources</i> , 2012 , 206, 103-107	8.9	25
190	Effect of anode current collector on the performance of passive direct methanol fuel cells. <i>International Journal of Energy Research</i> , 2009 , 33, 719-727	4.5	25
189	Electrochemical behaviors of dimethyl ether on platinum single crystal electrodes. Part I: Pt(1 1 1). Journal of Electroanalytical Chemistry, 2008 , 619-620, 143-151	4.1	25
188	Platinum Deposition on Multiwalled Carbon Nanotubes by Ion-Exchange Method as Electrocatalysts for Oxygen Reduction. <i>Journal of the Electrochemical Society</i> , 2007 , 154, B687	3.9	25
187	Cobalt nanoparticle-encapsulated carbon nanowire arrays: Enabling the fast redox reaction kinetics of lithium-sulfur batteries. <i>Carbon</i> , 2018 , 140, 385-393	10.4	25
186	Lithium Cobalt Oxides Functionalized by Conductive Al-doped ZnO Coating as Cathode for High-performance Lithium Ion Batteries. <i>Electrochimica Acta</i> , 2017 , 224, 96-104	6.7	24

185	Role of fluorine surface modification in improving electrochemical cyclability of concentration gradient Li[Ni0.73Co0.12Mn0.15]O2 cathode material for Li-ion batteries. <i>RSC Advances</i> , 2016 , 6, 26307-	- <u>3</u> 8316	5 ²⁴
184	Electrostatic Self-Assembly of a Pt-around-Au Nanocomposite with High Activity towards Formic Acid Oxidation. <i>Angewandte Chemie</i> , 2010 , 122, 2257-2260	3.6	24
183	Re-Looking into the Active Moieties of Metal X-ides (X- = Phosph-, Sulf-, Nitr-, and Carb-) Toward Oxygen Evolution Reaction. <i>Advanced Functional Materials</i> , 2021 , 31, 2102918	15.6	24
182	A quasi-solid-state LiB battery with high energy density, superior stability and safety. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 6533-6542	13	24
181	A flexible copper sulfide @ multi-walled carbon nanotubes cathode for advanced magnesium-lithium-ion batteries. <i>Journal of Colloid and Interface Science</i> , 2019 , 553, 239-246	9.3	23
180	Polymeric multilayer-modified manganese dioxide with hollow porous structure as sulfur host for lithium sulfur batteries. <i>Electrochimica Acta</i> , 2018 , 259, 440-448	6.7	23
179	Tungsten doped CoBe nanocomposites as an efficient non precious metal catalyst for oxygen reduction. <i>Electrochimica Acta</i> , 2013 , 91, 179-184	6.7	23
178	Improvement of cycle performance for silicon/carbon composite used as anode for lithium ion batteries. <i>Materials Chemistry and Physics</i> , 2009 , 115, 757-760	4.4	23
177	First-principles study of substituents effect on molecular junctions: Towards molecular rectification. <i>Computational Materials Science</i> , 2008 , 42, 638-642	3.2	23
176	Improved high-voltage performance of LiNi1/3Co1/3Mn1/3O2 cathode with Tris(2,2,2-trifluoroethyl) phosphite as electrolyte additive. <i>Electrochimica Acta</i> , 2017 , 243, 72-81	6.7	22
175	Enhancement of the electrochemical performance of silicon/carbon composite material for lithium ion batteries. <i>Ionics</i> , 2011 , 17, 87-90	2.7	22
174	Electro-oxidation of dimethyl ether on platinum nanocubes with preferential {100} surfaces. <i>Electrochemistry Communications</i> , 2009 , 11, 1596-1598	5.1	22
173	Capacity degradation mechanism and improvement actions for 4 V-class all-solid-state lithium-metal polymer batteries. <i>Chemical Engineering Journal</i> , 2020 , 392, 123665	14.7	22
172	Dendrites in Solid-State Batteries: Ion Transport Behavior, Advanced Characterization, and Interface Regulation. <i>Advanced Energy Materials</i> , 2021 , 11, 2003250	21.8	22
171	Enhanced Electrochemical Performance of LiNi0.8Co0.15Al0.05O2 Cathode Material via Li2TiO3 Nanoparticles Coating. <i>Journal of the Electrochemical Society</i> , 2019 , 166, A143-A150	3.9	22
170	Scalable mesoporous silicon microparticles composed of interconnected nanoplates for superior lithium storage. <i>Chemical Engineering Journal</i> , 2019 , 375, 121923	14.7	21
169	The degradation of LiCoO2/graphite batteries at different rates. <i>Electrochimica Acta</i> , 2018 , 279, 204-217	2 6.7	21
168	Accelerated aging and degradation mechanism of LiFePO/graphite batteries cycled at high discharge rates <i>RSC Advances</i> , 2018 , 8, 25695-25703	3.7	21

167	Facile preparation of Li4Ti5O12/AB/MWCNTs composite with high-rate performance for lithium ion battery. <i>Electrochimica Acta</i> , 2013 , 94, 294-299	6.7	21
166	Mixed lithium ion and electron conducting LiAlPO 3.93 F 1.07 -coated LiCoO 2 cathode with improved electrochemical performance. <i>Electrochemistry Communications</i> , 2017 , 83, 106-109	5.1	21
165	Theoretical investigations on the geometric and electronic structures of phenylene-acetylene macrocycles. <i>ChemPhysChem</i> , 2006 , 7, 2593-600	3.2	21
164	Intercalation pseudocapacitive electrochemistry of Nb-based oxides for fast charging of lithium-ion batteries. <i>Nano Energy</i> , 2021 , 81, 105635	17.1	21
163	Pseudocapacitive Li+ intercalation in ZnO/ZnO@C composites enables high-rate lithium-ion storage and stable cyclability. <i>Ceramics International</i> , 2017 , 43, 11998-12004	5.1	20
162	Ultra-thin polytetrafluoroethene/Nafion/silica membranes prepared with nano SiO2 and its comparison with solgel derived one for vanadium redox flow battery. <i>Solid State Ionics</i> , 2015 , 280, 30-3	6 ^{3.3}	20
161	Enhanced hydrogen evolution reaction activity of hydrogen-annealed vertical MoS nanosheets <i>RSC Advances</i> , 2018 , 8, 14369-14376	3.7	20
160	A Facile Route to Fabricate Effective Pt/IrO2 Bifunctional Catalyst for Unitized Regenerative Fuel Cell. <i>Catalysis Letters</i> , 2014 , 144, 242-247	2.8	20
159	Substrate strain tunes operando geometric distortion and oxygen reduction activity of CuNC single-atom sites. <i>Nature Communications</i> , 2021 , 12, 6335	17.4	20
158	Effect of short-time external short circuiting on the capacity fading mechanism during long-term cycling of LiCoO2/mesocarbon microbeads battery. <i>Journal of Power Sources</i> , 2016 , 318, 154-162	8.9	20
157	CoS/N-doped carbon core/shell nanocrystals as an anode material for potassium-ion storage. Journal of Solid State Electrochemistry, 2019 , 23, 27-32	2.6	20
156	Improved Rate Performance of Lithium Sulfur Batteries by In-Situ Anchoring of Lithium Iodide in Carbon/Sulfur Cathode. <i>Electrochimica Acta</i> , 2017 , 238, 257-262	6.7	19
155	The effects of functional ionic liquid on properties of solid polymer electrolyte. <i>Materials Chemistry and Physics</i> , 2011 , 128, 250-255	4.4	19
154	Uncovering the underlying science behind dimensionality in the potassium battery regime. <i>Energy Storage Materials</i> , 2020 , 25, 416-425	19.4	19
153	Three-dimensional layered double hydroxides on carbon nanofibers: The engineered mass transfer channels and active sites towards oxygen evolution reaction. <i>Applied Surface Science</i> , 2019 , 485, 41-47	6.7	18
152	A palladium-doped ceria@carbon core-sheath nanowire network: a promising catalyst support for alcohol electrooxidation reactions. <i>Nanoscale</i> , 2015 , 7, 13656-62	7.7	18
151	Concentration Gradient Pd-Ir-Ni/C Electrocatalyst with Enhanced Activity and Methanol Tolerance for Oxygen Reduction Reaction in Acidic Medium. <i>Electrochimica Acta</i> , 2016 , 192, 177-187	6.7	18
150	Improved electrochemical performance of NaAlO2-coated LiCoO2 for lithium-ion batteries. <i>Journal of Solid State Electrochemistry</i> , 2017 , 21, 1195-1201	2.6	18

149	High-performance carbon-coated LiMnPO4 nanocomposites by facile two-step solid-state synthesis for lithium-ion battery. <i>Journal of Solid State Electrochemistry</i> , 2015 , 19, 281-288	2.6	18
148	Novel method to deposit metal particles on transition metal oxide films and its application in lithium-ion batteries. <i>Electrochimica Acta</i> , 2008 , 54, 197-202	6.7	18
147	Engineering Molecular Polymerization for Template-Free SiOx/C Hollow Spheres as Ultrastable Anodes in Lithium-Ion Batteries. <i>Advanced Functional Materials</i> , 2021 , 31, 2101145	15.6	18
146	Electrochemically-driven interphase conditioning of magnesium electrode for magnesium sulfur batteries. <i>Journal of Energy Chemistry</i> , 2019 , 37, 215-219	12	17
145	Enhanced electrochemical performance of Li4Ti5O12 through in-situ coating 70Li2S-30P2S5 solid electrolyte for all-solid-state lithium batteries. <i>Journal of Alloys and Compounds</i> , 2018 , 752, 8-13	5.7	17
144	Degradation mechanism of over-charged LiCoO2/mesocarbon microbeads battery during shallow depth of discharge cycling. <i>Journal of Power Sources</i> , 2016 , 329, 255-261	8.9	17
143	Layer-by-Layer Engineered Silicon-Based Sandwich Nanomat as Flexible Anode for Lithium-Ion Batteries. <i>ACS Applied Materials & Acs Applied & Acs</i>	9.5	17
142	Enhanced lithium storage performance of silicon anode via fabricating into sandwich electrode. <i>Electrochimica Acta</i> , 2011 , 56, 4403-4407	6.7	17
141	Understanding the Structural Evolution and Lattice Water Movement for Rhombohedral Nickel Hexacyanoferrate upon Sodium Migration. <i>ACS Applied Materials & Discourt Materials & D</i>	13 ^{.5}	17
140	Improved Electrochemical Performance of LiNi0.8Co0.15Al0.05O2 Cathode Material by Coating of Graphene Nanodots. <i>Journal of the Electrochemical Society</i> , 2019 , 166, A1038-A1044	3.9	16
139	Electrochemical behaviors of dimethyl ether on platinum single crystal electrodes. Part II: Pt(100). Journal of Electroanalytical Chemistry, 2010 , 642, 82-91	4.1	16
138	Insights into the role of oxygen functional groups and defects in the rechargeable nonaqueous LiD2 batteries. <i>Electrochimica Acta</i> , 2018 , 292, 838-845	6.7	16
137	Mild synthesis of layer-by-layer SnO2 nanosheet/Pt/graphene composites as catalysts for ethanol electro-oxidation. <i>International Journal of Hydrogen Energy</i> , 2016 , 41, 14036-14046	6.7	15
136	Improving electrochemical performance of Nano-Si/N-doped carbon through tunning the microstructure from two dimensions to three dimensions. <i>Electrochimica Acta</i> , 2020 , 332, 135507	6.7	15
135	Modifying High-Voltage Olivine-Type LiMnPO4 Cathode via Mg Substitution in High-Orientation Crystal. <i>ACS Applied Energy Materials</i> , 2018 , 1, 5928-5935	6.1	15
134	Correlating the electrocatalytic stability of platinum monolayer catalysts with their structural evolution in the oxygen reduction reaction. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 20725-20736	13	15
133	Interrelated interfacial issues between a Li7La3Zr2O12-based garnet electrolyte and Li anode in the solid-state lithium battery: a review. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 5952-5979	13	15
132	Quantitative pinhole on-line electrochemical mass spectrometry study on ethanol electro-oxidation at carbon-supported Pt and Ir-containing catalysts. <i>International Journal of Hydrogen Energy</i> , 2017 , 42, 228-235	6.7	14

131	Highly stable one-dimensional Pt nanowires with modulated structural disorder towards the oxygen reduction reaction. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 24830-24836	13	14
130	Recovery Strategy and Mechanism of Aged Lithium Ion Batteries after Shallow Depth of Discharge at Elevated Temperature. <i>ACS Applied Materials & Samp; Interfaces</i> , 2016 , 8, 5234-42	9.5	14
129	Composition optimization of ternary palladiumIridiumIron alloy catalysts for oxygen reduction reaction in acid medium. <i>RSC Advances</i> , 2016 , 6, 22754-22763	3.7	14
128	Investigation of an Anode Catalyst for a Direct Dimethyl Ether Fuel Cell. <i>Energy & Direct Dimethyl Ether Fuels</i> , 2009, 23, 903-907	4.1	14
127	Immobilization and kinetic promotion of polysulfides by molybdenum carbide in lithium-sulfur batteries. <i>Chemical Engineering Journal</i> , 2021 , 411, 128563	14.7	14
126	An interface-reinforced rhombohedral Prussian blue analogue in semi-solid state electrolyte for sodium-ion battery. <i>Energy Storage Materials</i> , 2021 , 36, 99-107	19.4	14
125	Insights into enhanced sodium ion storage mechanism in Fe3S4: The coupling of surface chemistry, microstructural regulation and 3D electronic transport. <i>Nano Energy</i> , 2019 , 62, 384-392	17.1	13
124	State-of-health estimation for satellite batteries based on the actual operating parameters Health indicator extraction from the discharge curves and state estimation. <i>Journal of Energy Storage</i> , 2020 , 31, 101490	7.8	13
123	Scalable submicron/micron silicon particles stabilized in a robust graphite-carbon architecture for enhanced lithium storage. <i>Journal of Colloid and Interface Science</i> , 2019 , 555, 783-790	9.3	13
122	Improved electrochemical performance of nano-crystalline Li2FeSiO4/C cathode material prepared by the optimization of sintering temperature. <i>Journal of Solid State Electrochemistry</i> , 2013 , 17, 1955-19	15 <mark>3</mark> .6	13
121	A Phosphorous Additive for Lithium-Ion Batteries. <i>Electrochemical and Solid-State Letters</i> , 2008 , 11, A17	29	13
120	Electrochemical investigation of silicon/carbon composite as anode material for lithium ion batteries. <i>Journal of Materials Science</i> , 2008 , 43, 3149-3152	4.3	13
119	Stable Silicon Anodes by Molecular Layer Deposited Artificial Zincone Coatings. <i>Advanced Functional Materials</i> , 2021 , 31, 2010526	15.6	13
118	Facile synthesis of Pt3Ni alloy nanourchins by temperature modulation and their enhanced electrocatalytic properties. <i>Journal of Alloys and Compounds</i> , 2015 , 645, 309-316	5.7	12
117	Effects of VC-LiBOB binary additives on SEI formation in ionic liquidBrganic composite electrolyte. <i>RSC Advances</i> , 2012 , 2, 4097	3.7	12
116	Electrochemical reaction of the SiMn/C composite for anode in lithium ion batteries. <i>Electrochimica Acta</i> , 2006 , 52, 1527-1531	6.7	12
115	Conformational analysis of oligothiophenes in the external electric field. <i>Synthetic Metals</i> , 2004 , 145, 253-258	3.6	12
114	A bifunctional perovskite oxide catalyst: The triggered oxygen reduction/evolution electrocatalysis by moderated Mn-Ni co-doping. <i>Journal of Energy Chemistry</i> , 2021 , 54, 217-224	12	12

113	Improving electrochemical performance of rechargeable magnesium batteries with conditioning-free Mg-Cl complex electrolyte. <i>Chemical Engineering Journal</i> , 2021 , 403, 126398	14.7	12
112	Reversible Silicon Anodes with Long Cycles by Multifunctional Volumetric Buffer Layers. <i>ACS Applied Materials & Discourse (Materials & Discours)</i> 13, 4093-4101	9.5	12
111	Iodine-doped sulfurized polyacrylonitrile with enhanced electrochemical performance for lithium sulfur batteries in carbonate electrolyte. <i>Chemical Engineering Journal</i> , 2021 , 418, 129410	14.7	12
110	Unraveling the reaction mechanism of low dose Mn dopant in Ni(OH)2 supercapacitor electrode. <i>Journal of Energy Chemistry</i> , 2021 , 61, 497-506	12	12
109	An artificial interphase enables the use of Mg(TFSI)2-based electrolytes in magnesium metal batteries. <i>Chemical Engineering Journal</i> , 2021 , 426, 130751	14.7	12
108	Perovskite LaCoMnO with Tunable Defect and Surface Structures as Cathode Catalysts for Li-O Batteries. <i>ACS Applied Materials & Defect and Surfaces</i> , 2020 , 12, 10452-10460	9.5	11
107	3D hierarchical Co/CoO/C nanocomposites with mesoporous microsheets grown on nickel foam as cathodes for Li-O2 batteries. <i>Journal of Alloys and Compounds</i> , 2018 , 749, 378-384	5.7	11
106	Synthesis of Nitrogen-doped Niobium Dioxide and its co-catalytic effect towards the electrocatalysis of oxygen reduction on platinum. <i>Electrochimica Acta</i> , 2016 , 195, 166-174	6.7	11
105	In situ ion exchange preparation of Pt/carbon nanotubes electrode: Effect of two-step oxidation of carbon nanotubes. <i>Journal of Power Sources</i> , 2011 , 196, 9955-9960	8.9	11
104	Electrocatalytic oxidation of dimethyl ether on ruthenium modified platinum single crystal electrodes. <i>Catalysis Communications</i> , 2009 , 10, 971-974	3.2	11
103	Black phosphorus-modified sulfurized polyacrylonitrile with high C-rate and cycling performance in ether-based electrolyte for lithium sulfur batteries. <i>Chemical Communications</i> , 2020 , 56, 12797-12800	5.8	11
102	A Scalable Cathode Chemical Prelithiation Strategy for Advanced Silicon-Based Lithium Ion Full Batteries. <i>ACS Applied Materials & Discourse Materials</i> (2021), 13, 11985-11994	9.5	11
101	In-situ thermal polymerization boosts succinonitrile-based composite solid-state electrolyte for high performance Li-metal battery. <i>Journal of Power Sources</i> , 2021 , 496, 229861	8.9	11
100	Surface nitrided and carbon coated TiNb2O7 anode material with excellent performance for lithium-ion batteries. <i>Journal of Alloys and Compounds</i> , 2020 , 835, 155241	5.7	10
99	A review of applications of poly(diallyldimethyl ammonium chloride) in polymer membrane fuel cells: From nanoparticles to support materials. <i>Chinese Journal of Catalysis</i> , 2016 , 37, 1025-1036	11.3	10
98	Sulfur Dioxide-Tolerant Bimetallic PtRu Catalyst toward Oxygen Electroreduction. <i>ACS Sustainable Chemistry and Engineering</i> , 2020 , 8, 1295-1301	8.3	10
97	Two isomorphous coordination polymer-derived metal oxides as high-performance anodes for lithium-ion batteries. <i>New Journal of Chemistry</i> , 2017 , 41, 6187-6194	3.6	9
96	Direct dimethyl ether fuel cells with low platinum-group-metal loading at anode: Investigations of operating temperatures and anode Pt/Ru ratios. <i>Journal of Power Sources</i> , 2019 , 433, 126690	8.9	9

Interface Modifications by Tris(2,2,2-trifluoroethyl) Borate for Improving the High-Voltage 95 Performance of LiNi1/3Co1/3Mn1/3O2Cathode. Journal of the Electrochemical Society, **2017**, 164, A192 4^{3} A193 2 SiO2 stabilized Pt/C cathode catalyst for proton exchange membrane fuel cells. Applied Surface 6.7 94 9 Science, 2011, 257, 2371-2376 Unraveling the Promotion Effects of a Soluble Cobaltocene Catalyst with Respect to Li-O Battery 6.4 93 9 Discharge. Journal of Physical Chemistry Letters, 2020, 11, 7028-7034 An Interphase-enhanced Liquid Na-K Anode for Dendrite-free Alkali Metal Batteries Enabled by 92 9 19.4 SiCl4 Electrolyte Additive. Energy Storage Materials, 2021, 37, 199-206 Realizing Solid-Phase Reaction in LiB Batteries via Localized High-Concentration Carbonate 21.8 9 91 Electrolyte. Advanced Energy Materials, 2021, 11, 2101004 Unraveling the advances of trace doping engineering for potassium ion battery anodes via 90 12 9 tomography. Journal of Energy Chemistry, 2021, 58, 355-363 Proof-of-concept fabrication of carbon structure in CuNC catalysts of both high ORR activity and 89 10.4 9 stability. *Carbon*, **2021**, 174, 683-692 Rapid Prediction of the Open-Circuit-Voltage of Lithium Ion Batteries Based on an Effective 88 9 3.1 Voltage Relaxation Model. Energies, 2018, 11, 3444 Treatment of uterine myomas by radiofrequency thermal ablation: a 10-year retrospective cohort 87 8 study. Reproductive Sciences, 2015, 22, 609-14 Ultrathin Si Nanosheets Dispersed in Graphene Matrix Enable Stable Interface and High Rate 86 8 15.6 Capability of Anode for Lithium-ion Batteries. Advanced Functional Materials, 2110046 Se-doped carbon as highly stable cathode material for high energy nonaqueous Li-O2 batteries. 8 85 4.4 Chemical Engineering Science, 2020, 214, 115413 Evaluation of Oxygen Reduction Activity by the Thin-Film Rotating Disk Electrode Methodology: 84 2.7 the Effects of Potentiodynamic Parameters. Electrocatalysis, 2016, 7, 305-316 Prediction Model and Principle of End-of-Life Threshold for Lithium Ion Batteries Based on Open 83 6.7 7 Circuit Voltage Drifts. Electrochimica Acta, 2017, 255, 83-91 Lithium-Ion Batteries: Radially Oriented Single-Crystal Primary Nanosheets Enable Ultrahigh Rate and Cycling Properties of LiNi0.8Co0.1Mn0.1O2 Cathode Material for Lithium-Ion Batteries (Adv. 82 21.8 Energy Mater. 15/2019). Advanced Energy Materials, 2019, 9, 1970051 Polyvinylpyrrolidone-Coordinated Single-Site Platinum Catalyst Exhibits High Activity for Hydrogen 81 3.6 7 Evolution Reaction. Angewandte Chemie, 2020, 132, 16036-16041 Unraveling the effect of short-term high-temperature storage on the performance and thermal 80 8.9 7 stability of LiNi0.5Co0.2Mn0.3O2/graphite battery. Journal of Power Sources, 2020, 459, 227842 Tuning the electronic structure of platinum nanocrystals towards high efficient ethanol oxidation. 79 11.3 7 Chinese Journal of Catalysis, 2019, 40, 1904-1911 A Review of Magnesium Aluminum Chloride Complex Electrolytes for Mg Batteries. Advanced 78 Functional Materials, **2021**, 31, 2100650

77	Formation of an Artificial Mg-Permeable Interphase on Mg Anodes Compatible with Ether and Carbonate Electrolytes. <i>ACS Applied Materials & Carbonate Electrolytes</i> . <i>ACS Applied Materials & Carbonate Electrolytes</i> .	9.5	7	
76	Enhanced Methanol Oxidation in Acid Media on Pt/S, P Co-doped Graphene with 3D Porous Network Structure Engineering. <i>ChemElectroChem</i> , 2019 , 6, 1157-1165	4.3	7	
75	Recent progress of Prussian blue analogues as cathode materials for nonaqueous sodium-ion batteries. <i>Coordination Chemistry Reviews</i> , 2022 , 460, 214478	23.2	7	
74	Investigating the Structure of an Active Material Carbon Interface in the Monoclinic Li3V2(PO4)3/C Composite Cathode. <i>ACS Applied Energy Materials</i> , 2019 , 2, 3692-3702	6.1	6	
73	Synthesis of Well-Defined Pt-Based Catalysts for Methanol Oxidation Reaction Based on ElectronHole Separation Effects. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 8597-8603	8.3	6	
7²	Excellent room-temperature performance of lithium metal polymer battery with enhanced interfacial compatibility. <i>Electrochimica Acta</i> , 2018 , 283, 1261-1268	6.7	6	
71	The detection of hTERC amplification using fluorescence in situ hybridization in the diagnosis and prognosis of cervical intraepithelial neoplasia: a case control study. <i>World Journal of Surgical Oncology</i> , 2012 , 10, 168	3.4	6	
70	A quantum chemistry study of diethynylbenzene macrocycles: Structural and electronic properties. <i>Computational and Theoretical Chemistry</i> , 2008 , 861, 7-13		6	
69	Constructing an inorganic/organic mixed protective film for low-cost fabrication of stable lithium metal anode. <i>Journal of Alloys and Compounds</i> , 2020 , 818, 152862	5.7	6	
68	Unraveling the Relationship between Ti4+ Doping and Li+ Mobility Enhancement in Ti4+ Doped Li3V2(PO4)3. ACS Applied Energy Materials, 2020 , 3, 715-722	6.1	6	
67	Facile carbon fiber-sewed high areal density electrode for lithium sulfur batteries. <i>Chemical Communications</i> , 2020 , 56, 10758-10761	5.8	6	
66	Phosphorus-doped carbon as cathode material for high energy nonaqueous Li-O2 batteries. <i>Applied Surface Science</i> , 2021 , 543, 148864	6.7	6	
65	LiNi0.5Co0.2Mn0.3O2/graphite batteries storing at high temperature: Capacity fading and raveling of aging mechanisms. <i>Journal of Power Sources</i> , 2021 , 496, 229858	8.9	6	
64	Stabilizing Lithium Metal Anode Enabled by a Natural Polymer Layer for Lithium-Sulfur Batteries. <i>ACS Applied Materials & Discrete Sump; Interfaces</i> , 2021 , 13, 28252-28260	9.5	6	
63	A super thin polytetrafluoroethylene/sulfonated poly(ether ether ketone) membrane with 91% energy efficiency and high stability for vanadium redox flow battery. <i>Journal of Applied Polymer Science</i> , 2016 , 133,	2.9	6	
62	Toward Promising Turnkey Solution for Next-Generation Lithium Ion Batteries: Scale Preparation, Fading Analysis, and Enhanced Performance of Microsized Si/C Composites. <i>ACS Applied Energy Materials</i> , 2018 , 1, 6977-6985	6.1	6	
61	Accelerated Aging Analysis on Cycle Life of LiFePO4/Graphite Batteries Based on Different Rates. <i>ChemElectroChem</i> , 2018 , 5, 2301-2309	4.3	6	
60	Regulating Li deposition by constructing homogeneous LiF protective layer for high-performance Li metal anode. <i>Chemical Engineering Journal</i> , 2022 , 427, 131625	14.7	6	

59	A dynamic Ni(OH)2-NiOOH/NiFeP heterojunction enabling high-performance E-upgrading of hydroxymethylfurfural. <i>Applied Catalysis B: Environmental</i> , 2022 , 311, 121357	21.8	6
58	Enhancing high-voltage performances of nickel-based cathode material via aluminum and progressive concentration gradient modification. <i>Electrochimica Acta</i> , 2019 , 317, 459-467	6.7	5
57	Superior Electrochemical Performance of WNb2O8 Nanorods Triggered by Ultra-Efficient Li+Diffusion. <i>ChemistrySelect</i> , 2020 , 5, 1209-1213	1.8	5
56	Tin dioxide facilitated truncated octahedral Pt3Ni alloy catalyst: synthesis and ultra highly active and durable electrocatalysts for oxygen reduction reaction. <i>RSC Advances</i> , 2016 , 6, 26323-26328	3.7	5
55	Influence of accidental overcharging on the performance and degradation mechanisms of LiCoO2/mesocarbon microbead battery. <i>Journal of Solid State Electrochemistry</i> , 2018 , 22, 3743-3750	2.6	5
54	A porous N-doped carbon aggregate as sulfur host for lithium-sulfur batteries. <i>Ionics</i> , 2019 , 25, 2131-21	3:8 7	5
53	Layered porous silicon encapsulated in carbon nanotube cage as ultra-stable anode for lithium-ion batteries. <i>Chemical Engineering Journal</i> , 2022 , 431, 133982	14.7	5
52	2D surface induced self-assembly of Pd nanocrystals into nanostrings for enhanced formic acid electrooxidation. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 17128-17135	13	5
51	Solvate ionic liquid boosting favorable interfaces kinetics to achieve the excellent performance of Li4Ti5O12 anodes in Li10GeP2S12 based solid-state batteries. <i>Chemical Engineering Journal</i> , 2020 , 382, 123046	14.7	5
50	In-situ formed free-standing Ir nanocatalysts as carbon- and binder-free cathode for rechargeable nonaqueous Li D 2 batteries. <i>Journal of Alloys and Compounds</i> , 2020 , 832, 155009	5.7	5
49	Constructing Interfacial Nanolayer Stabilizes 4.3 V High-Voltage All-Solid-State Lithium Batteries with PEO-Based Solid-State Electrolyte. <i>Advanced Functional Materials</i> ,2113068	15.6	5
48	Anisotropically Electrochemical M echanical Evolution in Solid-State Batteries and Interfacial Tailored Strategy. <i>Angewandte Chemie</i> , 2019 , 131, 18820-18826	3.6	4
47	High electrochemical activity of Pt/C cathode modified with NH4HCO3 for direct methanol fuel cell. <i>Journal of Solid State Electrochemistry</i> , 2010 , 14, 633-636	2.6	4
46	The stable cycling of a high-capacity Bi anode enabled by an in situ-generated LiPO transition layer in a sulfide-based all-solid-state battery. <i>Chemical Communications</i> , 2020 , 56, 15458-15461	5.8	4
45	Voltage hysteresis of magnesium anode: Taking magnesium-sulfur battery as an example. <i>Electrochimica Acta</i> , 2021 , 369, 137685	6.7	4
44	Tailoring Porous Transition Metal Oxide for High-Performance Lithium Storage. <i>Journal of Physical Chemistry C</i> ,	3.8	4
43	Stable silicon anodes realized by multifunctional dynamic cross-linking structure with self-healing chemistry and enhanced ionic conductivity for lithium-ion batteries. <i>Nano Energy</i> , 2022 , 99, 107334	17.1	4
42	Evaluation of the effect of additive group five elements on the properties of Pb-Ca-Sn-Al alloy as the positive grid for lead-acid batteries. <i>Journal of Solid State Electrochemistry</i> , 2019 , 23, 1715-1725	2.6	3

(2021-2017)

41	Heterogeneous Nanostructure of Ternary PtRu-Au/C Nano-catalyst Towards Formic Acid Oxidation. <i>Electrochemistry</i> , 2017 , 85, 133-135	1.2	3	
40	The influence of anode diffusion layer on the performance of direct dimethyl ether fuel cell. <i>International Journal of Energy Research</i> , 2012 , 36, 886-890	4.5	3	
39	Ab initio investigations on the geometric and electronic structures of a diblock molecular diode under the influence of an external bias. <i>Molecular Simulation</i> , 2009 , 35, 301-307	2	3	
38	Crystallographic engineering to reduce diffusion barrier for enhanced intercalation pseudocapacitance of TiNb2O7 in fast-charging batteries. <i>Energy Storage Materials</i> , 2022 , 47, 178-178	19.4	3	
37	DFT and experimental study of nano red phosphorus anchoring on sulfurized polyacrylonitrile for lithium-ion batteries. <i>Chemical Communications</i> , 2020 , 56, 12857-12860	5.8	3	
36	Identifying the aging mechanism in multiple overdischarged LiCoO2/mesocarbon microbeads batteries. <i>Ceramics International</i> , 2021 ,	5.1	3	
35	Interface Reinforcement of a Prussian Blue Cathode Using a Non-Flammable Co-Solvent Cresyl Diphenyl Phosphate for a High-Safety Na-Ion Battery. <i>ACS Sustainable Chemistry and Engineering</i> , 2021 , 9, 5809-5817	8.3	3	
34	A Novel Spherical Boron Phosphide as a High-Efficiency Overall Water Splitting Catalyst: A Density Functional Theory Study. <i>Catalysis Letters</i> , 2020 , 150, 544-554	2.8	3	
33	Photoelectrochemistry-driven selective hydroxyl oxidation of polyols: Synergy between Au nanoparticles and C3N4 nanosheets. <i>Chem Catalysis</i> , 2021 , 1, 1260-1260		3	
32	Tailoring the stability of Fe-N-C via pyridinic nitrogen for acid oxygen reduction reaction. <i>Chemical Engineering Journal</i> , 2022 , 437, 135320	14.7	3	
31	Hydrothermal Self-Assembly Synthesis of Porous SnO2/Graphene Nanocomposite as an Anode Material for Lithium Ion Batteries. <i>Journal of Nanoscience and Nanotechnology</i> , 2017 , 17, 1877-1883	1.3	2	
30	Optimum compositions of membrane electrode assemblies (MEAs) for direct dimethyl ether fuel cell. <i>International Journal of Energy Research</i> , 2009 , 34, n/a-n/a	4.5	2	
29	Influence of hot-pressing temperature on physical and electrochemical performance of catalyst coated membranes for direct methanol fuel cells. <i>Journal of Applied Electrochemistry</i> , 2009 , 39, 859-866	2.6	2	
28	Tailoring lithium-peroxide reaction kinetics with CuN2C2 single-atom moieties for lithium-oxygen batteries. <i>Nano Energy</i> , 2022 , 93, 106810	17.1	2	
27	Enabling Highly Stable LiD2 Batteries with Full Discharge Tharge Capability: The Porous Binderand Carbon-Free IrNi Nanosheet Cathode. ACS Sustainable Chemistry and Engineering, 2020, 8, 16115-16	5123	2	
26	Deactivated Pt Electrocatalysts for the Oxygen Reduction Reaction: The Regeneration Mechanism and a Regenerative Protocol. <i>ACS Catalysis</i> , 2021 , 11, 9293-9299	13.1	2	
25	Bifunctional electrolyte additive KI to improve the cycling performance of LiD2 batteries. <i>New Journal of Chemistry</i> , 2018 , 42, 17311-17316	3.6	2	
24	An armor-like artificial solid electrolyte interphase layer for high performance lithium-sulfur batteries. <i>Applied Materials Today</i> , 2021 , 24, 101108	6.6	2	

23	Monovacancy Coupled Pyridinic N Site Enables Surging Oxygen Reduction Activity of Metal-Free CNx Catalyst. <i>ACS Sustainable Chemistry and Engineering</i> , 2021 , 9, 1264-1271	8.3	2
22	Single-Atom Tailored Hierarchical Transition Metal Oxide Nanocages for Efficient Lithium Storage <i>Small</i> , 2022 , e2200367	11	2
21	Curative effects of two new endometrial ablation procedures using radiofrequency thermocoagulation for the treatment of severe abnormal uterine bleeding. <i>Cell Biochemistry and Biophysics</i> , 2013 , 66, 529-35	3.2	1
20	Four categories of LEEP for CIN of various areas: a retrospective cohort study. <i>Minimally Invasive Therapy and Allied Technologies</i> , 2017 , 26, 104-110	2.1	1
19	Stable lithium anode enabled by biphasic hybrid SEI layer toward high-performance lithium metal batteries. <i>Chemical Engineering Journal</i> , 2021 , 433, 133570	14.7	1
18	EConjugation Induced Anchoring of Ferrocene on Graphdiyne Enable Shuttle-Free Redox Mediation in Lithium-Oxygen Batteries. <i>Advanced Science</i> , 2021 , e2103964	13.6	1
17	Chelated electrolytes for divalent metal ions. <i>Science</i> , 2021 , 374, 156	33.3	1
16	Propionic acidssisted surfactant-free synthesis of icosahedral Pt3Pd nanoparticles with enhanced electrochemical performance. <i>Ionics</i> , 2020 , 26, 5697-5703	2.7	1
15	Electrochemical behaviors in the anode of LiCoO2/mesocarbon microbead battery and their impacts on the capacity degradation. <i>Ionics</i> , 2021 , 27, 2353-2365	2.7	1
14	A multifunctional silicotungstic acid-modified Li-rich manganese-based cathode material with excellent electrochemical properties. <i>Journal of Solid State Electrochemistry</i> , 2019 , 23, 101-108	2.6	1
13	Deactivation and regeneration of a benchmark Pt/C catalyst toward oxygen reduction reaction in the presence of poisonous SO2 and NO. <i>Catalysis Science and Technology</i> ,	5.5	1
12	Poly (vinyl ethylene carbonate)-based dual-salt gel polymer electrolyte enabling high voltage lithium metal batteries. <i>Chemical Engineering Journal</i> , 2022 , 437, 135419	14.7	1
11	Interface defect chemistry enables dendrite-free lithium metal anodes. <i>Chemical Engineering Journal</i> , 2022 , 437, 135109	14.7	1
10	Enabling the conventional TFSI-based electrolytes for high-performance Mg/Li hybrid batteries by Mg electrode interfacial regulation. <i>Chemical Engineering Journal</i> , 2022 , 444, 136592	14.7	1
9	Molecular bridges stabilize lithium metal anode and solid-state electrolyte interface. <i>Chemical Engineering Journal</i> , 2022 , 432, 134271	14.7	О
8	Novel carbon structures as highly stable supports for electrocatalysts in acid media: regulating the oxygen functionalization behavior of carbon. <i>New Journal of Chemistry</i> , 2021 , 45, 10802-10809	3.6	0
7	Flame-Retardant and Polysulfide-Suppressed Ether-Based Electrolytes for High-Temperature Li-S Batteries. <i>ACS Applied Materials & Discrete Section</i> , 13, 38296-38304	9.5	O
6	Tuning the phase evolution pathway of LiNi0.5Mn1.5O4 synthesis from binary intermediates to ternary intermediates with thermal regulating agent. <i>Journal of Energy Chemistry</i> , 2022 , 65, 62-70	12	О

LIST OF PUBLICATIONS

5	Hierarchical NiMn/NiMn-LDH/ppy-C induced by a novel phase-transformation activation process for long-life supercapacitor <i>Journal of Colloid and Interface Science</i> , 2022 , 622, 1020-1028	9.3	О
4	Achieving high-energy-density magnesium/sulfur battery via a passivation-free Mg-Li alloy anode. <i>Energy Storage Materials</i> , 2022 , 50, 380-386	19.4	O
3	Structural Modulation of Coordination Polymers by Heterometallic Approach. <i>Zeitschrift Fur Anorganische Und Allgemeine Chemie</i> , 2019 , 645, 1062-1066	1.3	
2	Preparation and influence of performance of anodic catalysts for direct methanol fuel cell. <i>Frontiers of Chemical Engineering in China</i> , 2007 , 1, 20-25		
1	Pt/C-TiO2 as Oxygen Reduction Electrocatalysts against Sulfur Poisoning. <i>Catalysts</i> , 2022 , 12, 571	4	