Ge-Ping Yin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6608813/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Understanding and approaches for the durability issues of Pt-based catalysts for PEM fuel cell. Journal of Power Sources, 2007, 171, 558-566.	4.0	1,037
2	Nitrogen-doped carbon nanostructures and their composites as catalytic materials for proton exchange membrane fuel cell. Applied Catalysis B: Environmental, 2008, 79, 89-99.	10.8	710
3	Carbonized Nanoscale Metal–Organic Frameworks as High Performance Electrocatalyst for Oxygen Reduction Reaction. ACS Nano, 2014, 8, 12660-12668.	7.3	509
4	Proton exchange membrane fuel cell from low temperature to high temperature: Material challenges. Journal of Power Sources, 2007, 167, 235-242.	4.0	482
5	Durability Study of Ptâ^•C and Ptâ^•CNTs Catalysts under Simulated PEM Fuel Cell Conditions. Journal of the Electrochemical Society, 2006, 153, A1093.	1.3	384
6	Effect of carbon black support corrosion on the durability of Pt/C catalyst. Journal of Power Sources, 2007, 171, 331-339.	4.0	383
7	Graphene Decorated with PtAu Alloy Nanoparticles: Facile Synthesis and Promising Application for Formic Acid Oxidation. Chemistry of Materials, 2011, 23, 1079-1081.	3.2	366
8	Superior performance of ordered macroporous TiNb 2 O 7 anodes for lithium ion batteries: Understanding from the structural and pseudocapacitive insights on achieving high rate capability. Nano Energy, 2017, 34, 15-25.	8.2	351
9	Electrostatic Selfâ€Assembly of a Ptâ€aroundâ€Au Nanocomposite with High Activity towards Formic Acid Oxidation. Angewandte Chemie - International Edition, 2010, 49, 2211-2214.	7.2	295
10	Comparative investigation of the resistance to electrochemical oxidation of carbon black and carbon nanotubes in aqueous sulfuric acid solution. Electrochimica Acta, 2006, 51, 5853-5857.	2.6	294
11	Polyelectrolyte-Induced Reduction of Exfoliated Graphite Oxide: A Facile Route to Synthesis of Soluble Graphene Nanosheets. ACS Nano, 2011, 5, 1785-1791.	7.3	293
12	Understanding undesirable anode lithium plating issues in lithium-ion batteries. RSC Advances, 2016, 6, 88683-88700.	1.7	292
13	Interface Issues and Challenges in Allâ€Solidâ€State Batteries: Lithium, Sodium, and Beyond. Advanced Materials, 2021, 33, e2000721.	11.1	248
14	Evaluation of ZnO nanorod arrays with dandelion-like morphology as negative electrodes for lithium-ion batteries. Electrochimica Acta, 2009, 54, 2851-2855.	2.6	242
15	Radially Oriented Singleâ€Crystal Primary Nanosheets Enable Ultrahigh Rate and Cycling Properties of LiNi _{0.8} Co _{0.1} Mn _{0.1} O ₂ Cathode Material for Lithiumâ€Ion Batteries. Advanced Energy Materials, 2019, 9, 1803963.	10.2	240
16	Surface regulation enables high stability of single-crystal lithium-ion cathodes at high voltage. Nature Communications, 2020, 11, 3050.	5.8	225
17	ZIFâ€8 with Ferrocene Encapsulated: A Promising Precursor to Singleâ€Atom Fe Embedded Nitrogenâ€Doped Carbon as Highly Efficient Catalyst for Oxygen Electroreduction. Small, 2018, 14, e1704282.	5.2	202
18	Ultrahigh stable carbon riveted Pt/TiO ₂ –C catalyst prepared by in situ carbonized glucose for proton exchange membrane fuel cell. Energy and Environmental Science, 2011, 4, 728-735.	15.6	189

#	Article	IF	CITATIONS
19	Three dimensional N-doped graphene/PtRu nanoparticle hybrids as high performance anode for direct methanol fuel cells. Journal of Materials Chemistry A, 2014, 2, 3719.	5.2	183
20	Recent progress in nanostructured electrocatalysts for PEM fuel cells. Journal of Materials Chemistry A, 2013, 1, 4631.	5.2	172
21	Nanosized core/shell silicon@carbon anode material for lithium ion batteries with polyvinylidene fluoride as carbon source. Journal of Materials Chemistry, 2010, 20, 3216.	6.7	168
22	Pseudocapacitive Li+ intercalation in porous Ti2Nb10O29 nanospheres enables ultra-fast lithium storage. Energy Storage Materials, 2018, 11, 57-66.	9.5	163
23	Carbon nanotubes decorated with Pt nanoparticles via electrostatic self-assembly: a highly active oxygen reduction electrocatalyst. Journal of Materials Chemistry, 2010, 20, 2826.	6.7	153
24	Advanced catalyst supports for PEM fuel cell cathodes. Nano Energy, 2016, 29, 314-322.	8.2	146
25	Nitrogen–doped graphitized carbon shell encapsulated NiFe nanoparticles: A highly durable oxygen evolution catalyst. Nano Energy, 2017, 39, 245-252.	8.2	143
26	Nanoporous PdNi Alloy Nanowires As Highly Active Catalysts for the Electro-Oxidation of Formic Acid. ACS Applied Materials & Interfaces, 2011, 3, 105-109.	4.0	142
27	High-rate capability of three-dimensionally ordered macroporous T-Nb2O5 through Li+ intercalation pseudocapacitance. Journal of Power Sources, 2017, 361, 80-86.	4.0	139
28	High loading single-atom Cu dispersed on graphene for efficient oxygen reduction reaction. Nano Energy, 2019, 66, 104088.	8.2	138
29	Fluoroethylene carbonate as electrolyte additive to improve low temperature performance of LiFePO4 electrode. Electrochimica Acta, 2013, 87, 466-472.	2.6	137
30	Facile synthesis of PtAu alloy nanoparticles with high activity for formic acid oxidation. Journal of Power Sources, 2010, 195, 1103-1106.	4.0	133
31	Effects of temperature on charge/discharge behaviors of LiFePO4 cathode for Li-ion batteries. Electrochimica Acta, 2012, 60, 269-273.	2.6	133
32	Investigation of Further Improvement of Platinum Catalyst Durability with Highly Graphitized Carbon Nanotubes Support. Journal of Physical Chemistry C, 2008, 112, 5784-5789.	1.5	130
33	Improved electrochemical performance of micro-sized SiO-based composite anode by prelithiation of stabilized lithium metal powder. Journal of Power Sources, 2017, 347, 170-177.	4.0	129
34	Fabrication of CuO film with network-like architectures through solution-immersion and their application in lithium ion batteries. Journal of Power Sources, 2007, 167, 206-211.	4.0	126
35	Insights into interfacial effect and local lithium-ion transport in polycrystalline cathodes of solid-state batteries. Nature Communications, 2020, 11, 5700.	5.8	122
36	Achieving long-life Prussian blue analogue cathode for Na-ion batteries via triple-cation lattice substitution and coordinated water capture. Nano Energy, 2019, 61, 201-210.	8.2	121

#	Article	IF	CITATIONS
37	Tiâ€Based Oxide Anode Materials for Advanced Electrochemical Energy Storage: Lithium/Sodium Ion Batteries and Hybrid Pseudocapacitors. Small, 2019, 15, e1904740.	5.2	121
38	Enabling reliable lithium metal batteries by a bifunctional anionic electrolyte additive. Energy Storage Materials, 2018, 11, 197-204.	9.5	117
39	Multi-walled carbon nanotubes based Pt electrodes prepared with in situ ion exchange method for oxygen reduction. Journal of Power Sources, 2006, 161, 47-53.	4.0	114
40	Facile synthesis of nanostructured TiNb ₂ O ₇ anode materials with superior performance for high-rate lithium ion batteries. Chemical Communications, 2015, 51, 17293-17296.	2.2	108
41	Carbon riveted microcapsule Pt/MWCNTs-TiO2 catalyst prepared by in situ carbonized glucose with ultrahigh stability for proton exchange membrane fuel cell. Energy and Environmental Science, 2011, 4, 2558.	15.6	105
42	Electrocatalytic valorisation of biomass derived chemicals. Catalysis Science and Technology, 2018, 8, 3216-3232.	2.1	105
43	Self-assembly of Pt nanoparticles on highly graphitized carbon nanotubes as an excellent oxygen-reduction catalyst. Applied Catalysis B: Environmental, 2011, 102, 372-377.	10.8	104
44	Lithium-rich Li _{1.2} Ni _{0.13} Co _{0.13} Mn _{0.54} O ₂ oxide coated by Li ₃ PO ₄ and carbon nanocomposite layers as high performance cathode materials for lithium ion batteries. Journal of Materials Chemistry A, 2015, 3, 2634-2641.	5.2	103
45	Active and Stable Pt–Ni Alloy Octahedra Catalyst for Oxygen Reduction via Near-Surface Atomical Engineering. ACS Catalysis, 2020, 10, 4205-4214.	5.5	98
46	Oxygen vacancies in SnO2 surface coating to enhance the activation of layered Li-Rich Li1.2Mn0.54Ni0.13Co0.13O2 cathode material for Li-ion batteries. Journal of Power Sources, 2016, 331, 91-99.	4.0	95
47	A two-dimensional nitrogen-rich carbon/silicon composite as high performance anode material for lithium ion batteries. Chemical Engineering Journal, 2018, 341, 37-46.	6.6	95
48	Substrate strain tunes operando geometric distortion and oxygen reduction activity of CuN2C2 single-atom sites. Nature Communications, 2021, 12, 6335.	5.8	95
49	Ethanol-assisted hydrothermal synthesis of LiNi _{0.5} Mn _{1.5} O ₄ with excellent long-term cyclability at high rate for lithium-ion batteries. Journal of Materials Chemistry A, 2014, 2, 4185-4191.	5.2	94
50	Unravelling the origin of irreversible capacity loss in NaNiO2 for high voltage sodium ion batteries. Nano Energy, 2017, 34, 215-223.	8.2	94
51	A Mild Surface Washing Method Using Protonated Polyaniline for Ni-rich LiNi0.8Co0.1Mn0.1O2 Material of Lithium Ion Batteries. Electrochimica Acta, 2017, 248, 534-540.	2.6	89
52	Micro-sized spherical silicon@carbon@graphene prepared by spray drying as anode material for lithium-ion batteries. Journal of Alloys and Compounds, 2017, 723, 434-440.	2.8	89
53	Flower-like CuO film-electrode for lithium ion batteries and the effect of surface morphology on electrochemical performance. Electrochimica Acta, 2007, 53, 951-956.	2.6	88
54	Capacity fading mechanism during long-term cycling of over-discharged LiCoO2/mesocarbon microbeads battery. Journal of Power Sources, 2015, 293, 1006-1015.	4.0	88

#	Article	IF	CITATIONS
55	Stabilization of platinum nanoparticle electrocatalysts for oxygen reduction using poly(diallyldimethylammonium chloride). Journal of Materials Chemistry, 2009, 19, 7995.	6.7	87
56	Multi-stress factor model for cycle lifetime prediction of lithium ion batteries with shallow-depth discharge. Journal of Power Sources, 2015, 279, 123-132.	4.0	87
57	Facilitating the redox reaction of polysulfides by an electrocatalytic layer-modified separator for lithium–sulfur batteries. Journal of Materials Chemistry A, 2017, 5, 10936-10945.	5.2	87
58	Recent progress of Prussian blue analogues as cathode materials for nonaqueous sodium-ion batteries. Coordination Chemistry Reviews, 2022, 460, 214478.	9.5	87
59	Synergistic engineering of defects and architecture in Co3O4@C nanosheets toward Li/Na ion batteries with enhanced pseudocapacitances. Nano Energy, 2020, 78, 105366.	8.2	86
60	Bifunctional LaMn _{0.3} Co _{0.7} O ₃ Perovskite Oxide Catalyst for Oxygen Reduction and Evolution Reactions: The Optimized e _g Electronic Structures by Manganese Dopant. ACS Applied Materials & Interfaces, 2020, 12, 24717-24725.	4.0	85
61	lodine-doped sulfurized polyacrylonitrile with enhanced electrochemical performance for room-temperature sodium/potassium sulfur batteries. Chemical Communications, 2019, 55, 5267-5270.	2.2	83
62	Facile fabrication of a nanoporous silicon electrode with superior stability for lithium ion batteries. Energy and Environmental Science, 2011, 4, 1037.	15.6	80
63	Polyaniline-encapsulated silicon on three-dimensional carbon nanotubes foam with enhanced electrochemical performance for lithium-ion batteries. Journal of Power Sources, 2018, 381, 156-163.	4.0	80
64	Polyvinylpyrrolidoneâ€Coordinated Singleâ€Site Platinum Catalyst Exhibits High Activity for Hydrogen Evolution Reaction. Angewandte Chemie - International Edition, 2020, 59, 15902-15907.	7.2	80
65	Boron-doped graphene as promising support for platinum catalyst with superior activity towards the methanol electrooxidation reaction. Journal of Power Sources, 2015, 300, 245-253.	4.0	79
66	Structural Distortion Induced by Manganese Activation in a Lithium-Rich Layered Cathode. Journal of the American Chemical Society, 2020, 142, 14966-14973.	6.6	79
67	Pt decorated Ti3C2 MXene for enhanced methanol oxidation reaction. Ceramics International, 2019, 45, 2411-2417.	2.3	76
68	High-performance LiFePO4 cathode material from FePO4 microspheres with carbon nanotube networks embedded for lithium ion batteries. Journal of Power Sources, 2013, 223, 100-106.	4.0	75
69	An Li-rich oxide cathode material with mosaic spinel grain and a surface coating for high performance Li-ion batteries. Journal of Materials Chemistry A, 2014, 2, 15640.	5.2	75
70	A dual-salt coupled fluoroethylene carbonate succinonitrile-based electrolyte enables Li-metal batteries. Journal of Materials Chemistry A, 2020, 8, 2066-2073.	5.2	75
71	A dynamic Ni(OH)2-NiOOH/NiFeP heterojunction enabling high-performance E-upgrading of hydroxymethylfurfural. Applied Catalysis B: Environmental, 2022, 311, 121357.	10.8	75
72	Engineering Molecular Polymerization for Templateâ€Free SiO <i>_x</i> /C Hollow Spheres as Ultrastable Anodes in Lithiumâ€ion Batteries. Advanced Functional Materials, 2021, 31, 2101145.	7.8	74

#	Article	IF	CITATIONS
73	Palladium nanocrystals-imbedded mesoporous hollow carbon spheres with enhanced electrochemical kinetics for high performance lithium sulfur batteries. Carbon, 2019, 143, 878-889.	5.4	70
74	Carbon nanotubes supported Pt–Au catalysts for methanol-tolerant oxygen reduction reaction: A comparison between Pt/Au and PtAu nanoparticles. Journal of Power Sources, 2009, 194, 668-673.	4.0	69
75	State of health diagnosis model for lithium ion batteries based onÂreal-time impedance and open circuit voltage parameters identification method. Energy, 2018, 144, 647-656.	4.5	69
76	Dendrites in Solid‧tate Batteries: Ion Transport Behavior, Advanced Characterization, and Interface Regulation. Advanced Energy Materials, 2021, 11, 2003250.	10.2	69
77	Highly efficient and stable nonplatinum anode catalyst with Au@Pd core–shell nanostructures for methanol electrooxidation. Journal of Catalysis, 2012, 295, 217-222.	3.1	68
78	1,3,6-Hexanetricarbonitrile as electrolyte additive for enhancing electrochemical performance of high voltage Li-rich layered oxide cathode. Journal of Power Sources, 2017, 361, 227-236.	4.0	68
79	Reâ€Looking into the Active Moieties of Metal Xâ€ides (X― = Phosphâ€; Sulfâ€; Nitrâ€; and Carbâ€) Tov Oxygen Evolution Reaction. Advanced Functional Materials, 2021, 31, 2102918.	vard 7.8	68
80	Ultrathin Si Nanosheets Dispersed in Graphene Matrix Enable Stable Interface and High Rate Capability of Anode for Lithiumâ€ion Batteries. Advanced Functional Materials, 2022, 32, .	7.8	67
81	Ab Initio Investigations of the Electric Field Dependence of the Geometric and Electronic Structures of Molecular Wires. Journal of Physical Chemistry A, 2006, 110, 11130-11135.	1.1	66
82	Pd nanoparticles deposited on vertically aligned carbon nanotubes grown on carbon paper for for formic acid oxidation. International Journal of Hydrogen Energy, 2009, 34, 8270-8275.	3.8	66
83	A novel CNT@SnO2 core–sheath nanocomposite as a stabilizing support for catalysts of proton exchange membrane fuel cells. Electrochemistry Communications, 2009, 11, 496-498.	2.3	66
84	Improved electrochemical performance and capacity fading mechanism of nano-sized LiMn _{0.9} Fe _{0.1} PO ₄ cathode modified by polyacene coating. Journal of Materials Chemistry A, 2015, 3, 1569-1579.	5.2	64
85	Modification of Nafion membrane using fluorocarbon surfactant for all vanadium redox flow battery. Journal of Membrane Science, 2015, 476, 20-29.	4.1	64
86	Ni-MOF derived NiO/C nanospheres grown in situ on reduced graphene oxide towards high performance hybrid supercapacitor. Journal of Alloys and Compounds, 2019, 801, 158-165.	2.8	64
87	Electrochemical stability of silicon/carbon composite anode for lithium ion batteries. Electrochimica Acta, 2007, 52, 4878-4883.	2.6	63
88	A novel Pt/Au/C cathode catalyst for direct methanol fuel cells with simultaneous methanol tolerance and oxygen promotion. Electrochemistry Communications, 2008, 10, 831-834.	2.3	63
89	Free-Standing Sandwich-Type Graphene/Nanocellulose/Silicon Laminar Anode for Flexible Rechargeable Lithium Ion Batteries. ACS Applied Materials & Interfaces, 2018, 10, 29638-29646.	4.0	63
90	Covalently-functionalizing synthesis of Si@C core–shell nanocomposites as high-capacity anode materials for lithium-ion batteries. Journal of Materials Chemistry, 2011, 21, 15692.	6.7	62

#	Article	IF	CITATIONS
91	Al2O3 Coated Concentration-Gradient Li[Ni0.73Co0.12Mn0.15]O2 Cathode Material by Freeze Drying for Long-Life Lithium Ion Batteries. Electrochimica Acta, 2015, 174, 1185-1191.	2.6	61
92	Electronically Conductive Sb-doped SnO 2 Nanoparticles Coated LiNi 0.8 Co 0.15 Al 0.05 O 2 Cathode Material with Enhanced Electrochemical Properties for Li-ion Batteries. Electrochimica Acta, 2017, 236, 273-279.	2.6	61
93	Understanding the initial irreversibility of metal sulfides for sodium-ion batteries via operando techniques. Nano Energy, 2018, 43, 184-191.	8.2	61
94	Progressive concentration gradient nickel-rich oxide cathode material for high-energy and long-life lithium-ion batteries. Journal of Materials Chemistry A, 2019, 7, 7728-7735.	5.2	61
95	Boron, nitrogen co-doped graphene: a superior electrocatalyst support and enhancing mechanism for methanol electrooxidation. Electrochimica Acta, 2016, 212, 313-321.	2.6	60
96	Effects of fluoroethylene carbonate on low temperature performance of mesocarbon microbeads anode. Electrochimica Acta, 2012, 74, 260-266.	2.6	59
97	Pd-around-CeO _{2â^'x} hybrid nanostructure catalyst: three-phase-transfer synthesis, electrocatalytic properties and dual promoting mechanism. Journal of Materials Chemistry A, 2014, 2, 1429-1435.	5.2	58
98	Inducing uniform lithium nucleation by integrated lithium-rich li-in anode with lithiophilic 3D framework. Energy Storage Materials, 2020, 33, 423-431.	9.5	56
99	The effects of LiBOB additive for stable SEI formation of PP13TFSI-organic mixed electrolyte in lithium ion batteries. Electrochimica Acta, 2011, 56, 4841-4848.	2.6	53
100	A facile strategy to prepare nano-crystalline Li4Ti5O12/C anode material via polyvinyl alcohol as carbon source for high-rate rechargeable Li-ion batteries. Electrochimica Acta, 2013, 93, 173-178.	2.6	53
101	Low-Temperature Solution Synthesis of Black Phosphorus from Red Phosphorus: Crystallization Mechanism and Lithium Ion Battery Applications. Journal of Physical Chemistry Letters, 2020, 11, 2708-2716.	2.1	52
102	Intercalation pseudocapacitive electrochemistry of Nb-based oxides for fast charging of lithium-ion batteries. Nano Energy, 2021, 81, 105635.	8.2	52
103	Conformational analysis of diphenylacetylene under the influence of an external electric field. Physical Chemistry Chemical Physics, 2007, 9, 1186.	1.3	51
104	Improving electrochemical performance of NiO films by electrodeposition on foam nickel substrates. Journal of Applied Electrochemistry, 2009, 39, 1597-1602.	1.5	51
105	Effect of a Carbon Support Containing Large Mesopores on the Performance of a Ptâ^'Ruâ^'Ni/C Catalyst for Direct Methanol Fuel Cells. Journal of Physical Chemistry C, 2010, 114, 672-677.	1.5	51
106	Changes of Degradation Mechanisms of LiFePO4/Graphite Batteries Cycled at Different Ambient Temperatures. Electrochimica Acta, 2017, 237, 248-258.	2.6	51
107	A three-dimensional silicon/nitrogen-doped graphitized carbon composite as high-performance anode material for lithium ion batteries. Journal of Alloys and Compounds, 2019, 777, 190-197.	2.8	51
108	Hierarchical ordered macroporous/ultrathin mesoporous carbon architecture: A promising cathode scaffold with excellent rate performance for rechargeable Li-O2 batteries. Carbon, 2017, 118, 139-147.	5.4	50

#	Article	IF	CITATIONS
109	Engineering of Nitrogen Coordinated Single Cobalt Atom Moieties for Oxygen Electroreduction. ACS Applied Materials & Interfaces, 2019, 11, 41258-41266.	4.0	50
110	Interrelated interfacial issues between a Li ₇ La ₃ Zr ₂ O ₁₂ -based garnet electrolyte and Li anode in the solid-state lithium battery: a review. Journal of Materials Chemistry A, 2021, 9, 5952-5979.	5.2	50
111	Low-cost and durable catalyst support for fuel cells: Graphite submicronparticles. Journal of Power Sources, 2010, 195, 457-460.	4.0	49
112	Polyelectrolyte Assisted Synthesis and Enhanced Oxygen Reduction Activity of Pt Nanocrystals with Controllable Shape and Size. ACS Applied Materials & Interfaces, 2014, 6, 14043-14049.	4.0	49
113	A bifunctional perovskite oxide catalyst: The triggered oxygen reduction/evolution electrocatalysis by moderated Mn-Ni co-doping. Journal of Energy Chemistry, 2021, 54, 217-224.	7.1	49
114	In-situ thermal polymerization boosts succinonitrile-based composite solid-state electrolyte for high performance Li-metal battery. Journal of Power Sources, 2021, 496, 229861.	4.0	49
115	Role of Pt-pyridinic nitrogen sites in methanol oxidation on Pt/polypyrrole-carbon black Catalyst. Journal of Power Sources, 2012, 197, 44-49.	4.0	48
116	Enhancing electrochemical detection of dopamine via dumbbell-like FePt–Fe ₃ O ₄ nanoparticles. Nanoscale, 2017, 9, 1022-1027.	2.8	48
117	Tailoring the stability of Fe-N-C via pyridinic nitrogen for acid oxygen reduction reaction. Chemical Engineering Journal, 2022, 437, 135320.	6.6	48
118	Investigation on performance of Pd/Al ₂ O ₃ –C catalyst synthesized by microwave assisted polyol process for electrooxidation of formic acid. RSC Advances, 2012, 2, 344-350.	1.7	47
119	Enhancement of high voltage cycling performance and thermal stability of LiNi1/3Co1/3Mn1/3O2 cathode by use of boron-based additives. Solid State Ionics, 2014, 263, 146-151.	1.3	47
120	Unravelling the Interface Layer Formation and Gas Evolution/Suppression on a TiNb ₂ O ₇ Anode for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2018, 10, 27056-27062.	4.0	47
121	Iron sulfide/carbon hybrid cluster as an anode for potassium-ion storage. Journal of Alloys and Compounds, 2018, 766, 1086-1091.	2.8	47
122	Superior catalytic performance and CO tolerance of Ru@Pt/C-TiO2 electrocatalyst toward methanol oxidation reaction. Applied Surface Science, 2019, 473, 943-950.	3.1	47
123	Electrochemical durability investigation of single-walled and multi-walled carbon nanotubes under potentiostatic conditions. Journal of Power Sources, 2008, 176, 128-131.	4.0	46
124	Oxygen Reduction Kinetics on Pt Monolayer Shell Highly Affected by the Structure of Bimetallic AuNi Cores. Chemistry of Materials, 2016, 28, 5274-5281.	3.2	46
125	Stable Silicon Anodes by Molecular Layer Deposited Artificial Zincone Coatings. Advanced Functional Materials, 2021, 31, 2010526.	7.8	46
126	Realizing Solidâ€Phase Reaction in Li–S Batteries via Localized Highâ€Concentration Carbonate Electrolyte. Advanced Energy Materials, 2021, 11, 2101004.	10.2	46

#	Article	IF	CITATIONS
127	Investigations of Compositions and Performance of PtRuMo/C Ternary Catalysts for Methanol Electrooxidation. Fuel Cells, 2009, 9, 106-113.	1.5	45
128	Influence of fluoroethylene carbonate as co-solvent on the high-voltage performance of LiNi1/3Co1/3Mn1/3O2 cathode for lithium-ion batteries. Electrochimica Acta, 2016, 191, 8-15.	2.6	45
129	Phosphorus-doped graphene support to enhance electrocatalysis of methanol oxidation reaction on platinum nanoparticles. Chemical Physics Letters, 2017, 687, 1-8.	1.2	45
130	Pseudocapacitive Li+ storage boosts ultrahigh rate performance of structure-tailored CoFe2O4@Fe2O3 hollow spheres triggered by engineered surface and near-surface reactions. Nano Energy, 2019, 66, 104179.	8.2	45
131	Hydrothermal-assisted sol-gel synthesis of Li4Ti5O12/C nano-composite for high-energy lithium-ion batteries. Solid State Ionics, 2013, 244, 52-56.	1.3	44
132	Changing of SEI Film and Electrochemical Properties about MCMB Electrodes during Long-Term Charge/Discharge Cycles. Journal of the Electrochemical Society, 2013, 160, A2093-A2099.	1.3	44
133	Pt/Tin Oxide/Carbon Nanocomposites as Promising Oxygen Reduction Electrocatalyst with Improved Stability and Activity. Electrochimica Acta, 2014, 117, 413-419.	2.6	44
134	Metal–Organic Coordination Networks: Prussian Blue and Its Synergy with Pt Nanoparticles to Enhance Oxygen Reduction Kinetics. ACS Applied Materials & Interfaces, 2016, 8, 15250-15257.	4.0	44
135	A New Anion Receptor for Improving the Interface between Lithium- and Manganese-Rich Layered Oxide Cathode and the Electrolyte. Chemistry of Materials, 2017, 29, 2141-2149.	3.2	44
136	The Enhanced CO Tolerance of Platinum Supported on FeP Nanosheet for Superior Catalytic Activity Toward Methanol Oxidation. Electrochimica Acta, 2017, 254, 36-43.	2.6	44
137	Ascorbic acid-assisted solvothermal synthesis of LiMn 0.9 Fe 0.1 PO 4 /C nanoplatelets with enhanced electrochemical performance for lithium ion batteries. Journal of Power Sources, 2013, 243, 872-879.	4.0	43
138	The effect of elevated temperature on the accelerated aging of LiCoO2/mesocarbon microbeads batteries. Applied Energy, 2016, 177, 1-10.	5.1	43
139	Anisotropically Electrochemical–Mechanical Evolution in Solid‣tate Batteries and Interfacial Tailored Strategy. Angewandte Chemie - International Edition, 2019, 58, 18647-18653.	7.2	43
140	Simple annealing process for performance improvement of silicon anode based on polyvinylidene fluoride binder. Journal of Power Sources, 2010, 195, 2069-2073.	4.0	42
141	A quasi-solid-state Li–S battery with high energy density, superior stability and safety. Journal of Materials Chemistry A, 2019, 7, 6533-6542.	5.2	42
142	Degradation mechanism of LiCoO2/mesocarbon microbeads battery based on accelerated aging tests. Journal of Power Sources, 2014, 268, 816-823.	4.0	41
143	Amorphous carbon-encapsulated Si nanoparticles loading on MCMB with sandwich structure for lithium ion batteries. Electrochimica Acta, 2019, 306, 590-598.	2.6	41
144	Unraveling the reaction mechanism of low dose Mn dopant in Ni(OH)2 supercapacitor electrode. Journal of Energy Chemistry, 2021, 61, 497-506.	7.1	41

#	Article	IF	CITATIONS
145	A novel nanoporous Fe-doped lithium manganese phosphate material with superior long-term cycling stability for lithium-ion batteries. Nanoscale, 2015, 7, 11509-11514.	2.8	40
146	Self-doping Ti1-Nb2+O7 anode material for lithium-ion battery and its electrochemical performance. Journal of Alloys and Compounds, 2017, 728, 534-540.	2.8	40
147	Accelerated aging and degradation mechanism of LiFePO ₄ /graphite batteries cycled at high discharge rates. RSC Advances, 2018, 8, 25695-25703.	1.7	40
148	Pt–rGO–TiO2 nanocomposite by UV-photoreduction method as promising electrocatalyst for methanol oxidation. International Journal of Hydrogen Energy, 2013, 38, 12310-12317.	3.8	39
149	Clew-like N-doped multiwalled carbon nanotube aggregates derived from metal-organic complexes for lithium-sulfur batteries. Carbon, 2017, 122, 635-642.	5.4	39
150	A Review of Magnesium Aluminum Chloride Complex Electrolytes for Mg Batteries. Advanced Functional Materials, 2021, 31, 2100650.	7.8	39
151	Nickel-doped ceria nanoparticles for promoting catalytic activity of Pt/C for ethanol electrooxidation. Journal of Power Sources, 2014, 263, 310-314.	4.0	38
152	Pt nanoparticles supported by sulfur and phosphorus co-doped graphene as highly active catalyst for acidic methanol electrooxidation. Electrochimica Acta, 2018, 285, 202-213.	2.6	38
153	A flexible copper sulfide @ multi-walled carbon nanotubes cathode for advanced magnesium-lithium-ion batteries. Journal of Colloid and Interface Science, 2019, 553, 239-246.	5.0	38
154	A Scalable Cathode Chemical Prelithiation Strategy for Advanced Silicon-Based Lithium Ion Full Batteries. ACS Applied Materials & Interfaces, 2021, 13, 11985-11994.	4.0	38
155	Layered porous silicon encapsulated in carbon nanotube cage as ultra-stable anode for lithium-ion batteries. Chemical Engineering Journal, 2022, 431, 133982.	6.6	38
156	Theoretical investigations of oligo(phenylene ethylene) molecular wire: Effects from substituents and external electric field. Computational Materials Science, 2007, 39, 775-781.	1.4	37
157	Enhancement of low-temperature performance of LiFePO4 electrode by butyl sultone as electrolyte additive. Solid State Ionics, 2014, 254, 27-31.	1.3	37
158	Selective Surface Engineering of Heterogeneous Nanostructures: In Situ Unraveling of the Catalytic Mechanism on Pt–Au Catalyst. ACS Catalysis, 2017, 7, 7923-7929.	5.5	37
159	Lithium deposition on graphite anode during long-term cycles and the effect on capacity loss. RSC Advances, 2014, 4, 26335-26341.	1.7	36
160	Mild Synthesis of Pt/SnO ₂ /Graphene Nanocomposites with Remarkably Enhanced Ethanol Electroâ€oxidation Activity and Durability. Chemistry - A European Journal, 2016, 22, 193-198.	1.7	36
161	Ultra-low Pt decorated PdFe Alloy Nanoparticles for Formic Acid Electro-oxidation. Electrochimica Acta, 2016, 217, 203-209.	2.6	36
162	Enhanced hydrogen evolution reaction activity of hydrogen-annealed vertical MoS ₂ nanosheets. RSC Advances, 2018, 8, 14369-14376.	1.7	36

#	Article	IF	CITATIONS
163	An interface-reinforced rhombohedral Prussian blue analogue in semi-solid state electrolyte for sodium-ion battery. Energy Storage Materials, 2021, 36, 99-107.	9.5	36
164	Formation of an Artificial Mg ²⁺ -Permeable Interphase on Mg Anodes Compatible with Ether and Carbonate Electrolytes. ACS Applied Materials & Interfaces, 2021, 13, 24565-24574.	4.0	36
165	Immobilization and kinetic promotion of polysulfides by molybdenum carbide in lithium-sulfur batteries. Chemical Engineering Journal, 2021, 411, 128563.	6.6	35
166	Surface Structure Dependent Electro-oxidation of Dimethyl Ether on Platinum Single-Crystal Electrodes. Journal of Physical Chemistry C, 2007, 111, 18836-18838.	1.5	34
167	Ultra-thin polytetrafluoroethene/Nafion/silica composite membrane with high performance for vanadium redox flow battery. Journal of Power Sources, 2014, 272, 113-120.	4.0	34
168	Triphenyl phosphite as an electrolyte additive to improve the cyclic stability of lithium-rich layered oxide cathode for lithium-ion batteries. Electrochimica Acta, 2016, 216, 44-50.	2.6	34
169	Trimetallic Pt–Pd–Ni octahedral nanocages with subnanometer thick-wall towards high oxygen reduction reaction. Nano Energy, 2019, 64, 103890.	8.2	34
170	Capacity degradation mechanism and improvement actions for 4 V-class all-solid-state lithium-metal polymer batteries. Chemical Engineering Journal, 2020, 392, 123665.	6.6	34
171	Reversible Silicon Anodes with Long Cycles by Multifunctional Volumetric Buffer Layers. ACS Applied Materials & Interfaces, 2021, 13, 4093-4101.	4.0	34
172	An artificial interphase enables the use of Mg(TFSI)2-based electrolytes in magnesium metal batteries. Chemical Engineering Journal, 2021, 426, 130751.	6.6	34
173	Si–Mn composite anodes for lithium ion batteries. Journal of Alloys and Compounds, 2006, 414, 265-268.	2.8	33
174	Lithium Phosphorus Oxynitride Coated Concentration Gradient Li[Ni0.73Co0.12Mn0.15]O2 Cathode Material with Enhanced Electrochemical Properties. Electrochimica Acta, 2016, 192, 340-345.	2.6	33
175	Unraveling the Origins of the "Unreactive Core―in Conversion Electrodes to Trigger High Sodium-Ion Electrochemistry. ACS Energy Letters, 2019, 4, 2007-2012.	8.8	33
176	Sulfur Dioxide-Tolerant Bimetallic PtRu Catalyst toward Oxygen Electroreduction. ACS Sustainable Chemistry and Engineering, 2020, 8, 1295-1301.	3.2	33
177	Synthesis and electrochemical performance of Si/Cu and Si/Cu/graphite composite anode. Materials Chemistry and Physics, 2007, 104, 444-447.	2.0	32
178	Scalable mesoporous silicon microparticles composed of interconnected nanoplates for superior lithium storage. Chemical Engineering Journal, 2019, 375, 121923.	6.6	32
179	Electrochemical performance degeneration mechanism of LiCoO ₂ with high state of charge during long-term charge/discharge cycling. RSC Advances, 2015, 5, 81235-81242.	1.7	31
180	A Novel One-dimensional Reduced Graphene Oxide/Sulfur Nanoscroll Material and its Application in Lithium Sulfur Batteries. Electrochimica Acta, 2016, 222, 1861-1869.	2.6	31

#	Article	IF	CITATIONS
181	Facile synthesis of binder-free reduced graphene oxide/silicon anode for high-performance lithium ion batteries. Journal of Power Sources, 2016, 312, 216-222.	4.0	31
182	Lithium Cobalt Oxides Functionalized by Conductive Al-doped ZnO Coating as Cathode for High-performance Lithium Ion Batteries. Electrochimica Acta, 2017, 224, 96-104.	2.6	31
183	Cobalt nanoparticle-encapsulated carbon nanowire arrays: Enabling the fast redox reaction kinetics of lithium-sulfur batteries. Carbon, 2018, 140, 385-393.	5.4	31
184	Understanding the Structural Evolution and Lattice Water Movement for Rhombohedral Nickel Hexacyanoferrate upon Sodium Migration. ACS Applied Materials & Interfaces, 2019, 11, 46705-46713.	4.0	31
185	Iodine-doped sulfurized polyacrylonitrile with enhanced electrochemical performance for lithium sulfur batteries in carbonate electrolyte. Chemical Engineering Journal, 2021, 418, 129410.	6.6	31
186	Platinum Deposition on Multiwalled Carbon Nanotubes by Ion-Exchange Method as Electrocatalysts for Oxygen Reduction. Journal of the Electrochemical Society, 2007, 154, B687.	1.3	30
187	Effects of carbon on the structure and electrochemical performance of Li2FeSiO4 cathode materials for lithium-ion batteries. RSC Advances, 2012, 2, 6994.	1.7	30
188	Effect of Se in Co-based selenides towards oxygen reduction electrocatalytic activity. Journal of Power Sources, 2012, 206, 103-107.	4.0	30
189	Effect of short-time external short circuiting on the capacity fading mechanism during long-term cycling of LiCoO2/mesocarbon microbeads battery. Journal of Power Sources, 2016, 318, 154-162.	4.0	30
190	Improved Rate Performance of Lithium Sulfur Batteries by In-Situ Anchoring of Lithium Iodide in Carbon/Sulfur Cathode. Electrochimica Acta, 2017, 238, 257-262.	2.6	30
191	Uncovering the underlying science behind dimensionality in the potassium battery regime. Energy Storage Materials, 2020, 25, 416-425.	9.5	30
192	Crystallographic engineering to reduce diffusion barrier for enhanced intercalation pseudocapacitance of TiNb2O7 in fast-charging batteries. Energy Storage Materials, 2022, 47, 178-186.	9.5	30
193	Lithium Compound Deposition on Mesocarbon Microbead Anode of Lithium Ion Batteries after Long-Term Cycling. ACS Applied Materials & Interfaces, 2014, 6, 12962-12970.	4.0	29
194	Improved high-voltage performance of LiNi 1/3 Co 1/3 Mn 1/3 O 2 cathode with Tris(2,2,2-trifluoroethyl) phosphite as electrolyte additive. Electrochimica Acta, 2017, 243, 72-81.	2.6	29
195	Unravelling the Enhanced Highâ€Temperature Performance of Lithiumâ€Rich Oxide Cathode with Methyl Diphenylphosphinite as Electrolyte Additive. ChemElectroChem, 2018, 5, 1569-1575.	1.7	29
196	In Situ Deposition of Highly Dispersed Pt Nanoparticles on Carbon Black Electrode for Oxygen Reduction. Journal of the Electrochemical Society, 2006, 153, A1261.	1.3	28
197	Electrochemical behaviors of dimethyl ether on platinum single crystal electrodes. Part I: Pt(111). Journal of Electroanalytical Chemistry, 2008, 619-620, 143-151.	1.9	28
198	Degradation mechanism of over-charged LiCoO2/mesocarbon microbeads battery during shallow depth of discharge cycling. Journal of Power Sources, 2016, 329, 255-261.	4.0	28

#	Article	IF	CITATIONS
199	Role of fluorine surface modification in improving electrochemical cyclability of concentration gradient Li[Ni _{0.73} Co _{0.12} Mn _{0.15}]O ₂ cathode material for Li-ion batteries. RSC Advances, 2016, 6, 26307-26316.	1.7	28
200	Pseudocapacitive Li+ intercalation in ZnO/ZnO@C composites enables high-rate lithium-ion storage and stable cyclability. Ceramics International, 2017, 43, 11998-12004.	2.3	28
201	Mixed lithium ion and electron conducting LiAlPO 3.93 F 1.07 -coated LiCoO 2 cathode with improved electrochemical performance. Electrochemistry Communications, 2017, 83, 106-109.	2.3	28
202	Improvement of cycle performance for silicon/carbon composite used as anode for lithium ion batteries. Materials Chemistry and Physics, 2009, 115, 757-760.	2.0	27
203	Tungsten doped Co–Se nanocomposites as an efficient non precious metal catalyst for oxygen reduction. Electrochimica Acta, 2013, 91, 179-184.	2.6	27
204	The degradation of LiCoO2/graphite batteries at different rates. Electrochimica Acta, 2018, 279, 204-212.	2.6	27
205	Polymeric multilayer-modified manganese dioxide with hollow porous structure as sulfur host for lithium sulfur batteries. Electrochimica Acta, 2018, 259, 440-448.	2.6	27
206	Enhanced Electrochemical Performance of LiNi _{0.8} Co _{0.15} Al _{0.05} O ₂ Cathode Material via Li ₂ TiO ₃ Nanoparticles Coating. Journal of the Electrochemical Society, 2019, 166. A143-A150.	1.3	27
207	State-of-health estimation for satellite batteries based on the actual operating parameters – Health indicator extraction from the discharge curves and state estimation. Journal of Energy Storage, 2020, 31, 101490.	3.9	27
208	Stable silicon anodes realized by multifunctional dynamic cross-linking structure with self-healing chemistry and enhanced ionic conductivity for lithium-ion batteries. Nano Energy, 2022, 99, 107334.	8.2	27
209	Effect of anode current collector on the performance of passive direct methanol fuel cells. International Journal of Energy Research, 2009, 33, 719-727.	2.2	26
210	Layer-by-Layer Engineered Silicon-Based Sandwich Nanomat as Flexible Anode for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 39970-39978.	4.0	26
211	Highly stable one-dimensional Pt nanowires with modulated structural disorder towards the oxygen reduction reaction. Journal of Materials Chemistry A, 2019, 7, 24830-24836.	5.2	26
212	Enhancement of the electrochemical performance of silicon/carbon composite material for lithium ion batteries. Ionics, 2011, 17, 87-90.	1.2	25
213	Facile preparation of Li4Ti5O12/AB/MWCNTs composite with high-rate performance for lithium ion battery. Electrochimica Acta, 2013, 94, 294-299.	2.6	25
214	CoS/N-doped carbon core/shell nanocrystals as an anode material for potassium-ion storage. Journal of Solid State Electrochemistry, 2019, 23, 27-32.	1.2	25
215	An Interphase-enhanced Liquid Na-K Anode for Dendrite-free Alkali Metal Batteries Enabled by SiCl4 Electrolyte Additive. Energy Storage Materials, 2021, 37, 199-206.	9.5	25
216	Theoretical Investigations on the Geometric and Electronic Structures of Phenylene-Acetylene Macrocycles. ChemPhysChem, 2006, 7, 2593-2600.	1.0	24

#	Article	IF	CITATIONS
217	First-principles study of substituents effect on molecular junctions: Towards molecular rectification. Computational Materials Science, 2008, 42, 638-642.	1.4	24
218	Insights into enhanced sodium ion storage mechanism in Fe3S4: The coupling of surface chemistry, microstructural regulation and 3D electronic transport. Nano Energy, 2019, 62, 384-392.	8.2	24
219	Stable lithium anode enabled by biphasic hybrid SEI layer toward high-performance lithium metal batteries. Chemical Engineering Journal, 2022, 433, 133570.	6.6	24
220	Electro-oxidation of dimethyl ether on platinum nanocubes with preferential {100} surfaces. Electrochemistry Communications, 2009, 11, 1596-1598.	2.3	23
221	High-performance carbon-coated LiMnPO4 nanocomposites by facile two-step solid-state synthesis for lithium-ion battery. Journal of Solid State Electrochemistry, 2015, 19, 281-288.	1.2	23
222	Ultra-thin polytetrafluoroethene/Nafion/silica membranes prepared with nano SiO2 and its comparison with sol–gel derived one for vanadium redox flow battery. Solid State Ionics, 2015, 280, 30-36.	1.3	23
223	Perovskite LaCo _{<i>x</i>} Mn _{1–<i>x</i>} O _{3â[~]Îf} with Tunable Defect and Surface Structures as Cathode Catalysts for Li–O ₂ Batteries. ACS Applied Materials & amp; Interfaces, 2020, 12, 10452-10460.	4.0	23
224	Improving electrochemical performance of rechargeable magnesium batteries with conditioning-free Mg-Cl complex electrolyte. Chemical Engineering Journal, 2021, 403, 126398.	6.6	23
225	Constructing Interfacial Nanolayer Stabilizes 4.3 V Highâ€Voltage Allâ€Solidâ€State Lithium Batteries with PEOâ€Based Solidâ€State Electrolyte. Advanced Functional Materials, 2022, 32, .	7.8	23
226	Enhanced lithium storage performance of silicon anode via fabricating into sandwich electrode. Electrochimica Acta, 2011, 56, 4403-4407.	2.6	22
227	A palladium-doped ceria@carbon core–sheath nanowire network: a promising catalyst support for alcohol electrooxidation reactions. Nanoscale, 2015, 7, 13656-13662.	2.8	22
228	Insights into the role of oxygen functional groups and defects in the rechargeable nonaqueous Li–O2 batteries. Electrochimica Acta, 2018, 292, 838-845.	2.6	22
229	Correlating the electrocatalytic stability of platinum monolayer catalysts with their structural evolution in the oxygen reduction reaction. Journal of Materials Chemistry A, 2018, 6, 20725-20736.	5.2	22
230	Scalable submicron/micron silicon particles stabilized in a robust graphite-carbon architecture for enhanced lithium storage. Journal of Colloid and Interface Science, 2019, 555, 783-790.	5.0	22
231	Electrochemically-driven interphase conditioning of magnesium electrode for magnesium sulfur batteries. Journal of Energy Chemistry, 2019, 37, 215-219.	7.1	22
232	Three-dimensional layered double hydroxides on carbon nanofibers: The engineered mass transfer channels and active sites towards oxygen evolution reaction. Applied Surface Science, 2019, 485, 41-47.	3.1	22
233	Proof-of-concept fabrication of carbon structure in Cu–N–C catalysts of both high ORR activity and stability. Carbon, 2021, 174, 683-692.	5.4	22
234	Concentration Gradient Pd-Ir-Ni/C Electrocatalyst with Enhanced Activity and Methanol Tolerance for Oxygen Reduction Reaction in Acidic Medium. Electrochimica Acta, 2016, 192, 177-187.	2.6	21

#	Article	IF	CITATIONS
235	Improved electrochemical performance of NaAlO2-coated LiCoO2 for lithium-ion batteries. Journal of Solid State Electrochemistry, 2017, 21, 1195-1201.	1.2	21
236	Enhanced electrochemical performance of Li4Ti5O12 through in-situ coating 70Li2S-30P2S5 solid electrolyte for all-solid-state lithium batteries. Journal of Alloys and Compounds, 2018, 752, 8-13.	2.8	21
237	Flame-Retardant and Polysulfide-Suppressed Ether-Based Electrolytes for High-Temperature Li–S Batteries. ACS Applied Materials & Interfaces, 2021, 13, 38296-38304.	4.0	21
238	Regulating Li deposition by constructing homogeneous LiF protective layer for high-performance Li metal anode. Chemical Engineering Journal, 2022, 427, 131625.	6.6	21
239	Poly (vinyl ethylene carbonate)-based dual-salt gel polymer electrolyte enabling high voltage lithium metal batteries. Chemical Engineering Journal, 2022, 437, 135419.	6.6	21
240	The effects of functional ionic liquid on properties of solid polymer electrolyte. Materials Chemistry and Physics, 2011, 128, 250-255.	2.0	20
241	A Facile Route to Fabricate Effective Pt/IrO2 Bifunctional Catalyst for Unitized Regenerative Fuel Cell. Catalysis Letters, 2014, 144, 242-247.	1.4	20
242	Mild synthesis of layer-by-layer SnO2 nanosheet/Pt/graphene composites as catalysts for ethanol electro-oxidation. International Journal of Hydrogen Energy, 2016, 41, 14036-14046.	3.8	20
243	Modifying High-Voltage Olivine-Type LiMnPO ₄ Cathode via Mg Substitution in High-Orientation Crystal. ACS Applied Energy Materials, 2018, 1, 5928-5935.	2.5	20
244	Surface nitrided and carbon coated TiNb2O7 anode material with excellent performance for lithium-ion batteries. Journal of Alloys and Compounds, 2020, 835, 155241.	2.8	20
245	Electrochemical behaviors of dimethyl ether on platinum single crystal electrodes. Part II: Pt(100). Journal of Electroanalytical Chemistry, 2010, 642, 82-91.	1.9	19
246	Improved Electrochemical Performance of LiNi _{0.8} Co _{0.15} Al _{0.05} O ₂ Cathode Material by Coating of Graphene Nanodots. Journal of the Electrochemical Society, 2019, 166, A1038-A1044.	1.3	19
247	Stabilizing Lithium Metal Anode Enabled by a Natural Polymer Layer for Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2021, 13, 28252-28260.	4.0	19
248	Novel method to deposit metal particles on transition metal oxide films and its application in lithium-ion batteries. Electrochimica Acta, 2008, 54, 197-202.	2.6	18
249	3D hierarchical Co/CoO/C nanocomposites with mesoporous microsheets grown on nickel foam as cathodes for Li-O2 batteries. Journal of Alloys and Compounds, 2018, 749, 378-384.	2.8	18
250	Rapid Prediction of the Open-Circuit-Voltage of Lithium Ion Batteries Based on an Effective Voltage Relaxation Model. Energies, 2018, 11, 3444.	1.6	18
251	Direct dimethyl ether fuel cells with low platinum-group-metal loading at anode: Investigations of operating temperatures and anode Pt/Ru ratios. Journal of Power Sources, 2019, 433, 126690.	4.0	18
252	Improving electrochemical performance of Nano-Si/N-doped carbon through tunning the microstructure from two dimensions to three dimensions. Electrochimica Acta, 2020, 332, 135507.	2.6	18

#	Article	IF	CITATIONS
253	Se-doped carbon as highly stable cathode material for high energy nonaqueous Li-O2 batteries. Chemical Engineering Science, 2020, 214, 115413.	1.9	18
254	Phosphorus-doped carbon as cathode material for high energy nonaqueous Li-O2 batteries. Applied Surface Science, 2021, 543, 148864.	3.1	18
255	Investigation of an Anode Catalyst for a Direct Dimethyl Ether Fuel Cell. Energy & Fuels, 2009, 23, 903-907.	2.5	17
256	Facile synthesis of Pt3Ni alloy nanourchins by temperature modulation and their enhanced electrocatalytic properties. Journal of Alloys and Compounds, 2015, 645, 309-316.	2.8	17
257	Recovery Strategy and Mechanism of Aged Lithium Ion Batteries after Shallow Depth of Discharge at Elevated Temperature. ACS Applied Materials & Interfaces, 2016, 8, 5234-5242.	4.0	17
258	Quantitative pinhole on-line electrochemical mass spectrometry study on ethanol electro-oxidation at carbon-supported Pt and Ir-containing catalysts. International Journal of Hydrogen Energy, 2017, 42, 228-235.	3.8	17
259	Synthesis of Nitrogen-doped Niobium Dioxide and its co-catalytic effect towards the electrocatalysis of oxygen reduction on platinum. Electrochimica Acta, 2016, 195, 166-174.	2.6	16
260	LiNi0.5Co0.2Mn0.3O2/graphite batteries storing at high temperature: Capacity fading and raveling of aging mechanisms. Journal of Power Sources, 2021, 496, 229858.	4.0	16
261	Black phosphorus-modified sulfurized polyacrylonitrile with high C-rate and cycling performance in ether-based electrolyte for lithium sulfur batteries. Chemical Communications, 2020, 56, 12797-12800.	2.2	15
262	Photoelectrochemistry-driven selective hydroxyl oxidation of polyols: Synergy between Au nanoparticles and C3N4 nanosheets. Chem Catalysis, 2021, 1, 1260-1272.	2.9	15
263	A Phosphorous Additive for Lithium-Ion Batteries. Electrochemical and Solid-State Letters, 2008, 11, A129.	2.2	14
264	Improved electrochemical performance of nano-crystalline Li2FeSiO4/C cathode material prepared by the optimization of sintering temperature. Journal of Solid State Electrochemistry, 2013, 17, 1955-1959.	1.2	14
265	A review of applications of poly(diallyldimethyl ammonium chloride) in polymer membrane fuel cells: From nanoparticles to support materials. Chinese Journal of Catalysis, 2016, 37, 1025-1036.	6.9	14
266	Composition optimization of ternary palladium–iridium–iron alloy catalysts for oxygen reduction reaction in acid medium. RSC Advances, 2016, 6, 22754-22763.	1.7	14
267	Tuning the electronic structure of platinum nanocrystals towards high efficient ethanol oxidation. Chinese Journal of Catalysis, 2019, 40, 1904-1911.	6.9	14
268	Lithiumâ€lon Batteries: Radially Oriented Singleâ€Crystal Primary Nanosheets Enable Ultrahigh Rate and Cycling Properties of LiNi _{0.8} Co _{0.1} Mn _{0.1} O ₂ Cathode Material for Lithiumâ€lon Batteries (Adv. Energy Mater. 15/2019). Advanced Energy Materials, 2019, 9, 1970051.	10.2	14
269	Unraveling the Promotion Effects of a Soluble Cobaltocene Catalyst with Respect to Li–O ₂ Battery Discharge. Journal of Physical Chemistry Letters, 2020, 11, 7028-7034.	2.1	14
270	Achieving high-energy-density magnesium/sulfur battery via a passivation-free Mg-Li alloy anode. Energy Storage Materials, 2022, 50, 380-386.	9.5	14

#	Article	IF	CITATIONS
271	Electrochemical investigation of silicon/carbon composite as anode material for lithium ion batteries. Journal of Materials Science, 2008, 43, 3149-3152.	1.7	13
272	Effects of VC-LiBOB binary additives on SEI formation in ionic liquid–organic composite electrolyte. RSC Advances, 2012, 2, 4097.	1.7	13
273	Interface Modifications by Tris(2,2,2-trifluoroethyl) Borate for Improving the High-Voltage Performance of LiNi _{1/3} Co _{1/3} Mn _{1/3} O ₂ Cathode. Journal of the Electrochemical Society, 2017, 164, A1924-A1932.	1.3	13
274	Influence of accidental overcharging on the performance and degradation mechanisms of LiCoO2/mesocarbon microbead battery. Journal of Solid State Electrochemistry, 2018, 22, 3743-3750.	1.2	13
275	Conformational analysis of oligothiophenes in the external electric field. Synthetic Metals, 2004, 145, 253-258.	2.1	12
276	Electrochemical reaction of the SiMn/C composite for anode in lithium ion batteries. Electrochimica Acta, 2006, 52, 1527-1531.	2.6	12
277	Electrocatalytic oxidation of dimethyl ether on ruthenium modified platinum single crystal electrodes. Catalysis Communications, 2009, 10, 971-974.	1.6	12
278	Treatment of Uterine Myomas by Radiofrequency Thermal Ablation: A 10-Year Retrospective Cohort Study. Reproductive Sciences, 2015, 22, 609-614.	1.1	12
279	Anisotropically Electrochemical–Mechanical Evolution in Solidâ€State Batteries and Interfacial Tailored Strategy. Angewandte Chemie, 2019, 131, 18820-18826.	1.6	12
280	Solvate ionic liquid boosting favorable interfaces kinetics to achieve the excellent performance of Li4Ti5O12 anodes in Li10GeP2S12 based solid-state batteries. Chemical Engineering Journal, 2020, 382, 123046.	6.6	12
281	Unraveling the effect of short-term high-temperature storage on the performance and thermal stability of LiNi0.5Co0.2Mn0.3O2/graphite battery. Journal of Power Sources, 2020, 459, 227842.	4.0	12
282	Unraveling the advances of trace doping engineering for potassium ion battery anodes via tomography. Journal of Energy Chemistry, 2021, 58, 355-363.	7.1	12
283	Tailoring lithium-peroxide reaction kinetics with CuN2C2 single-atom moieties for lithium-oxygen batteries. Nano Energy, 2022, 93, 106810.	8.2	12
284	In situ ion exchange preparation of Pt/carbon nanotubes electrode: Effect of two-step oxidation of carbon nanotubes. Journal of Power Sources, 2011, 196, 9955-9960.	4.0	11
285	Prediction Model and Principle of End-of-Life Threshold for Lithium Ion Batteries Based on Open Circuit Voltage Drifts. Electrochimica Acta, 2017, 255, 83-91.	2.6	11
286	Unraveling the Relationship between Ti ⁴⁺ Doping and Li ⁺ Mobility Enhancement in Ti ⁴⁺ Doped Li ₃ V ₂ (PO ₄) ₃ . ACS Applied Energy Materials, 2020, 3, 715-722.	2.5	11
287	Polyvinylpyrrolidoneâ€Coordinated Singleâ€Site Platinum Catalyst Exhibits High Activity for Hydrogen Evolution Reaction. Angewandte Chemie, 2020, 132, 16036-16041.	1.6	11
288	Superior Electrochemical Performance of WNb ₂ O ₈ Nanorods Triggered by Ultraâ€Efficient Li ⁺ Diffusion. ChemistrySelect, 2020, 5, 1209-1213.	0.7	11

#	Article	IF	CITATIONS
289	Voltage hysteresis of magnesium anode: Taking magnesium-sulfur battery as an example. Electrochimica Acta, 2021, 369, 137685.	2.6	11
290	Identifying the aging mechanism in multiple overdischarged LiCoO2/mesocarbon microbeads batteries. Ceramics International, 2021, , .	2.3	11
291	Deactivated Pt Electrocatalysts for the Oxygen Reduction Reaction: The Regeneration Mechanism and a Regenerative Protocol. ACS Catalysis, 2021, 11, 9293-9299.	5.5	11
292	Two isomorphous coordination polymer-derived metal oxides as high-performance anodes for lithium-ion batteries. New Journal of Chemistry, 2017, 41, 6187-6194.	1.4	10
293	Toward Promising Turnkey Solution for Next-Generation Lithium Ion Batteries: Scale Preparation, Fading Analysis, and Enhanced Performance of Microsized Si/C Composites. ACS Applied Energy Materials, 2018, 1, 6977-6985.	2.5	10
294	Accelerated Aging Analysis on Cycle Life of LiFePO ₄ /Graphite Batteries Based on Different Rates. ChemElectroChem, 2018, 5, 2301-2309.	1.7	10
295	Enhancing high-voltage performances of nickel-based cathode material via aluminum and progressive concentration gradient modification. Electrochimica Acta, 2019, 317, 459-467.	2.6	10
296	Enhanced Methanol Oxidation in Acid Media on Pt/S, P Coâ€doped Graphene with 3D Porous Network Structure Engineering. ChemElectroChem, 2019, 6, 1157-1165.	1.7	10
297	Oxygen vacancies Nb2O5-: Ultrastable lithium storage anode materials for advanced rechargeable batteries. Applied Surface Science, 2022, 600, 154068.	3.1	10
298	SiO2 stabilized Pt/C cathode catalyst for proton exchange membrane fuel cells. Applied Surface Science, 2011, 257, 2371-2376.	3.1	9
299	A super thin polytetrafluoroethylene/sulfonated poly(ether ether ketone) membrane with 91% energy efficiency and high stability for vanadium redox flow battery. Journal of Applied Polymer Science, 2016, 133, .	1.3	9
300	Evaluation of Oxygen Reduction Activity by the Thin-Film Rotating Disk Electrode Methodology: the Effects of Potentiodynamic Parameters. Electrocatalysis, 2016, 7, 305-316.	1.5	9
301	Investigating the Structure of an Active Material–Carbon Interface in the Monoclinic Li ₃ V ₂ (PO ₄) ₃ /C Composite Cathode. ACS Applied Energy Materials, 2019, 2, 3692-3702.	2.5	9
302	Evaluation of the effect of additive group five elements on the properties of Pb-Ca-Sn-Al alloy as the positive grid for lead-acid batteries. Journal of Solid State Electrochemistry, 2019, 23, 1715-1725.	1.2	9
303	Facile carbon fiber-sewed high areal density electrode for lithium sulfur batteries. Chemical Communications, 2020, 56, 10758-10761.	2.2	9
304	2D surface induced self-assembly of Pd nanocrystals into nanostrings for enhanced formic acid electrooxidation. Journal of Materials Chemistry A, 2020, 8, 17128-17135.	5.2	9
305	Interface Reinforcement of a Prussian Blue Cathode Using a Non-Flammable Co-Solvent Cresyl Diphenyl Phosphate for a High-Safety Na-Ion Battery. ACS Sustainable Chemistry and Engineering, 2021, 9, 5809-5817.	3.2	9
306	<i>ï€</i> â€Conjugation Induced Anchoring of Ferrocene on Graphdiyne Enable Shuttleâ€Free Redox Mediation in Lithiumâ€Oxygen Batteries. Advanced Science, 2022, 9, e2103964.	5.6	9

#	Article	IF	CITATIONS
307	Molecular bridges stabilize lithium metal anode and solid-state electrolyte interface. Chemical Engineering Journal, 2022, 432, 134271.	6.6	9
308	Hierarchical NiMn/NiMn-LDH/ppy-C induced by a novel phase-transformation activation process for long-life supercapacitor. Journal of Colloid and Interface Science, 2022, 622, 1020-1028.	5.0	9
309	The detection of hTERC amplification using fluorescence in situ hybridization in the diagnosis and prognosis of cervical intraepithelial neoplasia: a case control study. World Journal of Surgical Oncology, 2012, 10, 168.	0.8	8
310	Tin dioxide facilitated truncated octahedral Pt ₃ Ni alloy catalyst: synthesis and ultra highly active and durable electrocatalysts for oxygen reduction reaction. RSC Advances, 2016, 6, 26323-26328.	1.7	8
311	A porous N-doped carbon aggregate as sulfur host for lithium-sulfur batteries. Ionics, 2019, 25, 2131-2138.	1.2	8
312	Monovacancy Coupled Pyridinic N Site Enables Surging Oxygen Reduction Activity of Metal-Free CNx Catalyst. ACS Sustainable Chemistry and Engineering, 2021, 9, 1264-1271.	3.2	8
313	Deactivation and regeneration of a benchmark Pt/C catalyst toward oxygen reduction reaction in the presence of poisonous SO ₂ and NO. Catalysis Science and Technology, 2022, 12, 2929-2934.	2.1	8
314	DNA Helix Structure Inspired Flexible Lithium-Ion Batteries with High Spiral Deformability and Long-Lived Cyclic Stability. Nano Letters, 2022, 22, 5553-5560.	4.5	8
315	Surface-Phase Engineering via Lanthanum Doping Enables Enhanced Electrochemical Performance of Li-Rich Layered Cathode. ACS Applied Energy Materials, 2022, 5, 9648-9656.	2.5	8
316	Excellent room-temperature performance of lithium metal polymer battery with enhanced interfacial compatibility. Electrochimica Acta, 2018, 283, 1261-1268.	2.6	7
317	Synthesis of Well-Defined Pt-Based Catalysts for Methanol Oxidation Reaction Based on Electron–Hole Separation Effects. ACS Sustainable Chemistry and Engineering, 2019, 7, 8597-8603.	3.2	7
318	A Novel Spherical Boron Phosphide as a High-Efficiency Overall Water Splitting Catalyst: A Density Functional Theory Study. Catalysis Letters, 2020, 150, 544-554.	1.4	7
319	Constructing an inorganic/organic mixed protective film for low-cost fabrication of stable lithium metal anode. Journal of Alloys and Compounds, 2020, 818, 152862.	2.8	7
320	Tailoring Porous Transition Metal Oxide for High-Performance Lithium Storage. Journal of Physical Chemistry C, 2021, 125, 22435-22445.	1.5	7
321	Chelated electrolytes for divalent metal ions. Science, 2021, 374, 156-156.	6.0	7
322	A quantum chemistry study of diethynylbenzene macrocycles: Structural and electronic properties. Computational and Theoretical Chemistry, 2008, 861, 7-13.	1.5	6
323	High electrochemical activity of Pt/C cathode modified with NH4HCO3 for direct methanol fuel cell. Journal of Solid State Electrochemistry, 2010, 14, 633-636.	1.2	6
324	The stable cycling of a high-capacity Bi anode enabled by an <i>in situ</i> generated Li ₃ PO ₄ transition layer in a sulfide-based all-solid-state battery. Chemical Communications, 2020, 56, 15458-15461.	2.2	6

#	Article	IF	CITATIONS
325	In-situ formed free-standing Ir nanocatalysts as carbon- and binder-free cathode for rechargeable nonaqueous Li–O2 batteries. Journal of Alloys and Compounds, 2020, 832, 155009.	2.8	6
326	Singleâ€Atom Tailored Hierarchical Transition Metal Oxide Nanocages for Efficient Lithium Storage. Small, 2022, 18, e2200367.	5.2	6
327	Interface defect chemistry enables dendrite-free lithium metal anodes. Chemical Engineering Journal, 2022, 437, 135109.	6.6	6
328	Developing a Double Protection Strategy for High-Performance Spinel LiNi _{0.5} Mn _{1.5} O ₄ Cathodes. ACS Applied Energy Materials, 2022, 5, 6401-6409.	2.5	6
329	Self-assembled Li4Ti5O12/rGO nanocomposite anode for high power lithium-ion batteries. Inorganic Chemistry Communication, 2022, 144, 109753.	1.8	6
330	The influence of anode diffusion layer on the performance of direct dimethyl ether fuel cell. International Journal of Energy Research, 2012, 36, 886-890.	2.2	5
331	Four categories of LEEP for CIN of various areas: a retrospective cohort study. Minimally Invasive Therapy and Allied Technologies, 2017, 26, 104-110.	0.6	5
332	Immobilization and Kinetic Acceleration of Lithium Polysulfides by Iodine-Doped MXene Nanosheets in Lithium–Sulfur Batteries. Journal of Physical Chemistry C, 2022, 126, 10986-10994.	1.5	5
333	Ab initioinvestigations on the geometric and electronic structures of a diblock molecular diode under the influence of an external bias. Molecular Simulation, 2009, 35, 301-307.	0.9	4
334	Enabling Highly Stable Li–O ₂ Batteries with Full Discharge–Charge Capability: The Porous Binder- and Carbon-Free IrNi Nanosheet Cathode. ACS Sustainable Chemistry and Engineering, 2020, 8, 16115-16123.	3.2	4
335	DFT and experimental study of nano red phosphorus anchoring on sulfurized polyacrylonitrile for lithium-ion batteries. Chemical Communications, 2020, 56, 12857-12860.	2.2	4
336	An armor-like artificial solid electrolyte interphase layer for high performance lithium-sulfur batteries. Applied Materials Today, 2021, 24, 101108.	2.3	4
337	Tuning the phase evolution pathway of LiNi0.5Mn1.5O4 synthesis from binary intermediates to ternary intermediates with thermal regulating agent. Journal of Energy Chemistry, 2022, 65, 62-70.	7.1	4
338	Enabling the conventional TFSI-based electrolytes for high-performance Mg/Li hybrid batteries by Mg electrode interfacial regulation. Chemical Engineering Journal, 2022, 444, 136592.	6.6	4
339	Optimum compositions of membrane electrode assemblies (MEAs) for direct dimethyl ether fuel cell. International Journal of Energy Research, 2009, 34, n/a-n/a.	2.2	3
340	Heterogeneous Nanostructure of Ternary PtRu-Au/C Nano-catalyst Towards Formic Acid Oxidation. Electrochemistry, 2017, 85, 133-135.	0.6	3
341	Pt/C-TiO2 as Oxygen Reduction Electrocatalysts against Sulfur Poisoning. Catalysts, 2022, 12, 571.	1.6	3
342	Influence of hot-pressing temperature on physical and electrochemical performance of catalyst coated membranes for direct methanol fuel cells. Journal of Applied Electrochemistry, 2009, 39, 859-866.	1.5	2

#	Article	IF	CITATIONS
343	Hydrothermal Self-Assembly Synthesis of Porous SnO ₂ /Graphene Nanocomposite as an Anode Material for Lithium Ion Batteries. Journal of Nanoscience and Nanotechnology, 2017, 17, 1877-1883.	0.9	2
344	Bifunctional electrolyte additive KI to improve the cycling performance of Li–O ₂ batteries. New Journal of Chemistry, 2018, 42, 17311-17316.	1.4	2
345	Propionic acid–assisted surfactant-free synthesis of icosahedral Pt3Pd nanoparticles with enhanced electrochemical performance. Ionics, 2020, 26, 5697-5703.	1.2	2
346	Novel carbon structures as highly stable supports for electrocatalysts in acid media: regulating the oxygen functionalization behavior of carbon. New Journal of Chemistry, 2021, 45, 10802-10809.	1.4	2
347	Electrochemical behaviors in the anode of LiCoO2/mesocarbon microbead battery and their impacts on the capacity degradation. Ionics, 2021, 27, 2353-2365.	1.2	2
348	Curative Effects of Two New Endometrial Ablation Procedures Using Radiofrequency Thermocoagulation for the Treatment of Severe Abnormal Uterine Bleeding. Cell Biochemistry and Biophysics, 2013, 66, 529-535.	0.9	1
349	A multifunctional silicotungstic acid-modified Li-rich manganese-based cathode material with excellent electrochemical properties. Journal of Solid State Electrochemistry, 2019, 23, 101-108.	1.2	1
350	Preparation and influence of performance of anodic catalysts for direct methanol fuel cell. Frontiers of Chemical Engineering in China, 2007, 1, 20-25.	0.6	0
351	Structural Modulation of Coordination Polymers by Heterometallic Approach. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2019, 645, 1062-1066.	0.6	0