

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6608736/publications.pdf Version: 2024-02-01

VANULAO

#	Article	IF	CITATIONS
1	Stock Assessment of Scalloped Hammerheads in the Western North Atlantic Ocean and Gulf of Mexico. North American Journal of Fisheries Management, 2009, 29, 1406-1417.	0.5	59
2	Regime shift in marine ecosystems and implications for fisheries management, a review. Reviews in Fish Biology and Fisheries, 2009, 19, 177-191.	2.4	56
3	Modelling non-stationary natural mortality in catch-at-age models. ICES Journal of Marine Science, 2012, 69, 105-118.	1.2	48
4	Hierarchical Bayesian approach for population dynamics modelling of fish complexes without species-specific data. ICES Journal of Marine Science, 2009, 66, 367-377.	1.2	39
5	Poor-data and data-poor species stock assessment using a Bayesian hierarchical approach. , 2011, 21, 2691-2708.		39
6	Canonical dual least square method for solving general nonlinear systems of quadratic equations. Computational Optimization and Applications, 2010, 47, 335-347.	0.9	33
7	Hindcasting Historical Breeding Conditions for an Endangered Salamander in Ephemeral Wetlands of the Southeastern USA: Implications of Climate Change. PLoS ONE, 2016, 11, e0150169.	1.1	31
8	Seabird bycatch vulnerability to pelagic longline fisheries: Ecological traits matter. Aquatic Conservation: Marine and Freshwater Ecosystems, 2019, 29, 1324-1335.	0.9	27
9	A simulation study of impacts of error structure on modeling stock–recruitment data using generalized linear models. Canadian Journal of Fisheries and Aquatic Sciences, 2004, 61, 122-133.	0.7	26
10	Performance comparison between spatial interpolation and GLM/GAM in estimating relative abundance indices through a simulation study. Fisheries Research, 2013, 147, 186-195.	0.9	26
11	Performance comparison of traditional sampling designs and adaptive sampling designs for fishery-independent surveys: A simulation study. Fisheries Research, 2012, 113, 173-181.	0.9	24
12	Hierarchical demographic approaches for assessing invasion dynamics of non-indigenous species: An example using northern snakehead (Channa argus). Ecological Modelling, 2009, 220, 1681-1689.	1.2	23
13	Models and model selection uncertainty in estimating growth rates of endangered freshwater mussel populations. Canadian Journal of Fisheries and Aquatic Sciences, 2008, 65, 2389-2398.	0.7	21
14	Incorporating temporal variation in the growth of red abalone (Haliotis rufescens) using hierarchical Bayesian growth models. Canadian Journal of Fisheries and Aquatic Sciences, 2010, 67, 730-742.	0.7	21
15	Developing robust frequentist and Bayesian fish stock assessment methods. Fish and Fisheries, 2003, 4, 105-120.	2.7	20
16	Decreasing uncertainty in catch rate analyses using Delta-AdaBoost: An alternative approach in catch and bycatch analyses with high percentage of zeros. Fisheries Research, 2011, 107, 261-271.	0.9	20
17	Catchâ€Rate Standardization for Yellow Perch in Lake Erie: A Comparison of the Spatial Generalized Linear Model and the Generalized Additive Model. Transactions of the American Fisheries Society, 2011, 140, 905-918.	0.6	18
18	Hook Effects on Seabird Bycatch in the United States Atlantic Pelagic Longline Fishery. Bulletin of Marine Science, 2012, 88, 559-569.	0.4	18

Yan Jiao

#	Article	IF	CITATIONS
19	Gillâ€Net Saturation in Lake Erie: Effects of Soak Time and Fish Accumulation on Catch per Unit Effort of Walleye and Yellow Perch. North American Journal of Fisheries Management, 2011, 31, 280-290.	0.5	17
20	Variation in the catchability of yellow perch (Perca flavescens) in the fisheries of Lake Erie using a Bayesian error-in-variable approach. ICES Journal of Marine Science, 2006, 63, 1695-1704.	1.2	16
21	Modeling Low Rates of Seabird Bycatch in the U.S. Atlantic Longline Fishery. Waterbirds, 2011, 34, 289-303.	0.2	16
22	Life-History Characteristics of Japanese Medaka Oryzias latipes. Copeia, 2011, 2011, 559-565.	1.4	16
23	Model Selection Uncertainty and Bayesian Model Averaging in Fisheries Recruitment Modeling. , 2009, , 505-524.		15
24	An application of generalized linear models in production model and sequential population analysis. Fisheries Research, 2004, 70, 367-376.	0.9	14
25	An application of the composite risk assessment method in assessing fisheries stock status. Fisheries Research, 2005, 72, 173-183.	0.9	14
26	Exploring the Use of a Sizeâ€Based Eggâ€perâ€Recruit Model for the Red Abalone Fishery in California. North American Journal of Fisheries Management, 2008, 28, 1638-1647.	0.5	14
27	Use of <scp>PIT</scp> tags to assess individual heterogeneity of laboratoryâ€reared juveniles of the endangered Cumberlandian combshell (<i>Epioblasma brevidens</i>) in a mark–recapture study. Ecology and Evolution, 2015, 5, 1076-1087.	0.8	14
28	A hierarchical Bayesian approach for estimating freshwater mussel growth based on tag-recapture data. Fisheries Research, 2014, 149, 24-32.	0.9	13
29	Linear mixed-effects models to describe length-weight relationships for yellow croaker (Larimichthys) Tj ETQq1 1	0.78431	4 rggT /Overld
30	Growth and Population Size of Grass Carp Incrementally Stocked for Hydrilla Control. North American Journal of Fisheries Management, 2013, 33, 14-25.	0.5	11
31	Assessment of seabird bycatch in the US Atlantic pelagic longline fishery, with an extra exploration on modeling spatial variation. ICES Journal of Marine Science, 2016, 73, 2687-2694.	1.2	11
32	Calibrating virtual population analysis for fisheries stock assessment. Aquatic Living Resources, 2008, 21, 89-97.	0.5	10
33	Life, Death, and Resurrection: Accounting for State Uncertainty in Survival Estimation from Tagged Grass Carp. North American Journal of Fisheries Management, 2015, 35, 321-330.	0.5	9
34	Exploring non-stationary and scale-dependent relationships between walleye (Sander vitreus) distribution and habitat variables in Lake Erie. Marine and Freshwater Research, 2017, 68, 270.	0.7	9
35	Evaluating spatial and temporal variability in growth and mortality for recreational fisheries with limited catch data. Canadian Journal of Fisheries and Aquatic Sciences, 2018, 75, 1436-1452.	0.7	9
36	A comparison between traditional and measurement-error growth models for weakfish <i>Cynoscion regalis</i> . PeerJ, 2016, 4, e2431.	0.9	9

Yan Jiao

#	Article	IF	CITATIONS
37	Modeling seabird bycatch in the U.S. Atlantic pelagic longline fishery: Fixed year effect versus random year effect. Ecological Modelling, 2013, 260, 36-41.	1.2	8
38	Integrating spatial synchrony/asynchrony of population distribution into stock assessment models: a spatial hierarchical Bayesian statistical catch-at-age approach. ICES Journal of Marine Science, 2016, 73, 1725-1738.	1.2	8
39	Long-term climate ocean oscillations inform seabird bycatch from pelagic longline fishery. ICES Journal of Marine Science, 2020, 77, 668-679.	1.2	8
40	Modeling spatially-varying ecological relationships using geographically weighted generalized linear model: A simulation study based on longline seabird bycatch. Fisheries Research, 2016, 181, 14-24.	0.9	7
41	Reconciling larval and adult sampling methods to model growth across life-stages. PLoS ONE, 2020, 15, e0237737.	1.1	7
42	Population dynamics modelling with spatial heterogeneity for yellow croaker (Larimichthys) Tj ETQq0 0 0 rgBT /O	verlock 10 0.4) Tf 50 542 T
43	Seabird bycatch loss rate variability in pelagic longline fisheries. Biological Conservation, 2020, 247, 108590.	1.9	7
44	Consideration of uncertainty in the design and use of harvest control rules. Scientia Marina, 2010, 74, 371-384.	0.3	7

45	PeerJ, 2019, 7, e7350.	0.9	7
46	An analysis of error structure in modeling the stock–recruitment data of gadoid stocks using generalized linear models. Canadian Journal of Fisheries and Aquatic Sciences, 2004, 61, 134-146.	0.7	6
47	A Simulation Study to Evaluate Biases in Population Characteristics Estimation Associated with Varying Bin Numbers in Sizeâ€Based Age Subsampling. North American Journal of Fisheries Management, 2020, 40, 675-690.	0.5	6
48	Growth Dynamics of Invasive Blue Catfish in Four Subestuaries of the Chesapeake Bay, USA. North American Journal of Fisheries Management, 2021, , .	0.5	6
49	Evaluation of stocking strategies for endangered white abalone using a hierarchical demographic model. Ecological Modelling, 2015, 299, 14-22.	1.2	5
50	How much do we know about seabird bycatch in pelagic longline fisheries? A simulation study on the potential bias caused by the usually unobserved portion of seabird bycatch. PLoS ONE, 2019, 14, e0220797.	1.1	5
51	A Bayesian spatiotemporal approach to inform management unit appropriateness. Canadian Journal of Fisheries and Aquatic Sciences, 2019, 76, 217-237.	0.7	5
52	Climate driven spatiotemporal variations in seabird bycatch hotspots and implications for seabird bycatch mitigation. Scientific Reports, 2021, 11, 20704.	1.6	5
53	Spatial analyses of the influence of autocorrelation on seasonal diet composition of a marine fish species. Fisheries Research, 2020, 228, 105563.	0.9	4
54	Sexual and spatio-temporal variation of Lake Erie Walleye growth and maturity: A consequence of multiple impacting factors. Aquaculture and Fisheries, 2021, 6, 400-413.	1.2	4

4

Yan Jiao

#	Article	IF	CITATIONS
55	Modeling spatial patterns of rare species using eigenfunction-based spatial filters: An example of modified delta model for zero-inflated data. Ecological Modelling, 2015, 299, 51-63.	1.2	3
56	Estimating time-based instantaneous total mortality rate based on the age-structured abundance index. Chinese Journal of Oceanology and Limnology, 2015, 33, 559-576.	0.7	3
57	Assessment of landed and non-landed by-catch of walleye, yellow perch and white perch from the commercial gillnet fisheries of Lake Erie, 1994–2007. Journal of Great Lakes Research, 2011, 37, 325-334.	0.8	2
58	Habitat supply for Yellow Perch (Actinopterygii, Percidae) varies with space, time, and life stage in Lake Erie. Hydrobiologia, 2018, 808, 371-386.	1.0	2
59	Population status and distribution of whitespotted conger (Conger myriaster) in Yellow Sea: An important migratory species along coastal China with limited data. Fisheries Oceanography, 2020, 29, 32-45.	0.9	2
60	Environmental and anthropogenic influences on spatiotemporal dynamics of Alosa in Chesapeake Bay tributaries. Ecosphere, 2021, 12, e03544.	1.0	2
61	Periodic growth and growth cessations in the federally endangered freshwater mussel Cumberlandian combshell using a hierarchical Bayesian approach. Endangered Species Research, 2016, 31, 325-336.	1.2	2
62	Graphical Evaluation of Fishery Status Using a Likelihood Inference Approach. North American Journal of Fisheries Management, 2009, 29, 1106-1118.	0.5	1
63	Influences of gillnet fishing on lake sturgeon bycatch in Lake Erie and implications for conservation. Endangered Species Research, 2011, 13, 253-261.	1.2	1
64	K-aggregated transformation of discrete distributions improves modeling count data with excess ones. Ecological Modelling, 2019, 407, 108726.	1.2	1
65	Detection of fish movement patterns across management unit boundaries using age-structured Bayesian hierarchical models with tag-recovery data. PLoS ONE, 2020, 15, e0243423.	1.1	1