Yan Jiao

List of Publications by Year in descending order

Source: https:/|exaly.com/author-pdf/6608736/publications.pdf
Version: 2024-02-01

Stock Assessment of Scalloped Hammerheads in the Western North Atlantic Ocean and Gulf of
Mexico. North American Journal of Fisheries Management, 2009, 29, 1406-1417.

Regime shift in marine ecosystems and implications for fisheries management, a review. Reviews in Fish Biology and Fisheries, 2009, 19, 177-191.

Modelling non-stationary natural mortality in catch-at-age models. ICES Journal of Marine Science, 2012, 69, 105-118.

Hierarchical Bayesian approach for population dynamics modelling of fish complexes without species-specific data. ICES Journal of Marine Science, 2009, 66, 367-377.

Poor-data and data-poor species stock assessment using a Bayesian hierarchical approach. , 2011, 21, 2691-2708.

Canonical dual least square method for solving general nonlinear systems of quadratic equations.
Computational Optimization and Applications, 2010, 47, 335-347.
0.9 Hindcasting Historical Breeding Conditions for an Endangered Salamander in Ephemeral Wetlands of Hindcasting Historical Breeding Conditions for an Endangered Salamander in Ephemeral
the Southeastern USA: Implications of Climate Change. PLoS ONE, 2016, 11, e0150169.
1.1

31

Seabird bycatch vulnerability to pelagic longline fisheries: Ecological traits matter. Aquatic Conservation: Marine and Freshwater Ecosystems, 2019, 29, 1324-1335.
0.9

27

A simulation study of impacts of error structure on modeling stock $\hat{A}-$ recruitment data using generalized linear models. Canadian Journal of Fisheries and Aquatic Sciences, 2004, 61, 122-133.

Performance comparison between spatial interpolation and GLM/GAM in estimating relative abundance indices through a simulation study. Fisheries Research, 2013, 147, 186-195.
0.9

26
10 indices through a simulation study. Fisheries Research, 2013, 147, 186-195.

Performance comparison of traditional sampling designs and adaptive sampling designs for
fishery-independent surveys: A simulation study. Fisheries Research, 2012, 113, 173-181.

Hierarchical demographic approaches for assessing invasion dynamics of non-indigenous species: An example using northern snakehead (Channa argus). Ecological Modelling, 2009, 220, 1681-1689.

Models and model selection uncertainty in estimating growth rates of endangered freshwater mussel populations. Canadian Journal of Fisheries and Aquatic Sciences, 2008, 65, 2389-2398.

Incorporating temporal variation in the growth of red abalone (Haliotis rufescens) using
14 hierarchical Bayesian growth models. Canadian Journal of Fisheries and Aquatic Sciences, 2010, 67, 730-742.

15 Developing robust frequentist and Bayesian fish stock assessment methods. Fish and Fisheries, 2003, 4, 105-120.

Decreasing uncertainty in catch rate analyses using Delta-AdaBoost: An alternative approach in catch and bycatch analyses with high percentage of zeros. Fisheries Research, 2011, 107, 261-271.
23 Model Selection Uncertainty and Bayesian Model Averaging in Fisheries Recruitment Modeling. , 2009, ,
An application of generalized linear models in production model and sequential population analysis.Fisheries Research, 2004, 70, 367-376.

25
An application of the composite risk assessment method in assessing fisheries stock status. Fisheries
Research, 2005, 72, 173-183.Ecology and Evolution, 2015, 5, 1076-1087.

A hierarchical Bayesian approach for estimating freshwater mussel growth based on tag-recapture data. Fisheries Research, 2014, 149, 24-32.

Linear mixed-effects models to describe length-weight relationships for yellow croaker (Larimichthys) Tj ETQq1 10.784314 rgBT /Ove

32 Calibrating virtual population analysis for fisheries stock assessment. Aquatic Living Resources, 2008,
limited catch data. Canadian Journal of Fisheries and Aquatic Sciences, 2018, 75, 1436-1452.

Integrating spatial synchrony/asynchrony of population distribution into stock assessment models: a
38 spatial hierarchical Bayesian statistical catch-at-age approach. ICES Journal of Marine Science, 2016, 73,
39 Long-term climate ocean oscillations inform seabird bycatch from pelagic longline fishery. ICES

40 Modeling spatially-varying ecological relationships using geographically weighted generalized linear model: A simulation study based on longline seabird bycatch. Fisheries Research, 2016, 181, 14-24.
Reconciling larval and adult sampling methods to model growth across life-stages. PLoS ONE, 2020,
15, e0237737.
42 Population dynamics modelling with spatial heterogeneity for yellow croaker (Larimichthys) Tj ETQqO
$43 \quad$ Seabird bycatch loss rate variability in pelagic longline fisheries. Biological Conservation, 2020, 247,
44 Consideration of uncertainty in the design and use of harvest control rules. Scientia Marina, 2010, 74,

45	Exploring spatial nonstationary environmental effects on Yellow Perch distribution in Lake Erie. PeerJ, 2019, 7, e7350.	0.9	7
46	An analysis of error structure in modeling the stockÂ-recruitment data of gadoid stocks using generalized linear models. Canadian Journal of Fisheries and Aquatic Sciences, 2004, 61, 134-146.	0.7	6
47	A Simulation Study to Evaluate Biases in Population Characteristics Estimation Associated with Varying Bin Numbers in Sizeâ€Based Age Subsampling. North American Journal of Fisheries Management, 2020, 40, 675-690.	0.5	6
48	Growth Dynamics of Invasive Blue Catfish in Four Subestuaries of the Chesapeake Bay, USA. North American Journal of Fisheries Management, 2021, , .	0.5	6
49	Evaluation of stocking strategies for endangered white abalone using a hierarchical demographic model. Ecological Modelling, 2015, 299, 14-22.	1.2	5
50	How much do we know about seabird bycatch in pelagic longline fisheries? A simulation study on the potential bias caused by the usually unobserved portion of seabird bycatch. PLoS ONE, 2019, 14, e0220797.	1.1	5
51	A Bayesian spatiotemporal approach to inform management unit appropriateness. Canadian Journal of Fisheries and Aquatic Sciences, 2019, 76, 217-237.	0.7	5

55

Modeling spatial patterns of rare species using eigenfunction-based spatial filters: An example of

Estimating time-based instantaneous total mortality rate based on the age-structured abundance index. Chinese Journal of Oceanology and Limnology, 2015, 33, 559-576.

```
59 Population status and distribution of whitespotted conger (Conger myriaster ) in Yellow Sea: An
59 important migratory species along coastal China with limited data. Fisheries Oceanography, 2020, 29,
```

$0.9 \quad 2$ 32-45.

60 Environmental and anthropogenic influences on spatiotemporal dynamics of Alosa in Chesapeake Bay tributaries. Ecosphere, 2021, 12, e03544.

