Cory C Cleveland

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6608701/publications.pdf

Version: 2024-02-01

102 21,700 59 101 papers citations h-index g-index

121 121 20661 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Nitrogen Cycles: Past, Present, and Future. Biogeochemistry, 2004, 70, 153-226.	1.7	4,203
2	C:N:P stoichiometry in soil: is there a "Redfield ratio―for the microbial biomass?. Biogeochemistry, 2007, 85, 235-252.	1.7	1,720
3	Global patterns in belowground communities. Ecology Letters, 2009, 12, 1238-1249.	3.0	957
4	Global patterns of terrestrial biological nitrogen (N2) fixation in natural ecosystems. Global Biogeochemical Cycles, 1999, 13, 623-645.	1.9	811
5	Towards an ecological understanding of biological nitrogen fixation. Biogeochemistry, 2002, 57, 1-45.	1.7	719
6	Biological nitrogen fixation: rates, patterns and ecological controls in terrestrial ecosystems. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20130119.	1.8	537
7	Negative impact of nitrogen deposition on soil buffering capacity. Nature Geoscience, 2008, 1, 767-770.	5.4	530
8	Future productivity and carbon storage limited by terrestrial nutrient availability. Nature Geoscience, 2015, 8, 441-444.	5.4	529
9	Functional Ecology of Free-Living Nitrogen Fixation: A Contemporary Perspective. Annual Review of Ecology, Evolution, and Systematics, 2011, 42, 489-512.	3.8	479
10	Phosphorus Limitation of Microbial Processes in Moist Tropical Forests: Evidence from Short-term Laboratory Incubations and Field Studies. Ecosystems, 2002, 5, 0680-0691.	1.6	385
11	Nutrient additions to a tropical rain forest drive substantial soil carbon dioxide losses to the atmosphere. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 10316-10321.	3.3	379
12	Relationships among net primary productivity, nutrients and climate in tropical rain forest: a panâ€tropical analysis. Ecology Letters, 2011, 14, 939-947.	3.0	379
13	Increases in soil respiration following labile carbon additions linked to rapid shifts in soil microbial community composition. Biogeochemistry, 2007, 82, 229-240.	1.7	378
14	CONTROLS OVER FOLIAR N:P RATIOS IN TROPICAL RAIN FORESTS. Ecology, 2007, 88, 107-118.	1.5	375
15	Human health effects of a changing global nitrogen cycle. Frontiers in Ecology and the Environment, 2003, 1, 240-246.	1.9	370
16	Global patterns in the biogeography of bacterial taxa. Environmental Microbiology, 2011, 13, 135-144.	1.8	362
17	Microbial Community Succession in an Unvegetated, Recently Deglaciated Soil. Microbial Ecology, 2007, 53, 110-122.	1.4	359
18	Changes in assembly processes in soil bacterial communities following a wildfire disturbance. ISME Journal, 2013, 7, 1102-1111.	4.4	354

#	Article	IF	Citations
19	Soil fungal pathogens and the relationship between plant diversity and productivity. Ecology Letters, 2011, 14, 36-41.	3.0	345
20	The origin of litter chemical complexity during decomposition. Ecology Letters, 2012, 15, 1180-1188.	3.0	316
21	Large divergence of satellite and Earth system model estimates of global terrestrial CO2Âfertilization. Nature Climate Change, 2016, 6, 306-310.	8.1	309
22	BIOGEOCHEMICAL CONSEQUENCES OF RAPID MICROBIAL TURNOVER AND SEASONAL SUCCESSION IN SOIL. Ecology, 2007, 88, 1379-1385.	1.5	297
23	Biochar additions alter phosphorus and nitrogen availability in agricultural ecosystems: A meta-analysis. Science of the Total Environment, 2019, 654, 463-472.	3.9	275
24	Patterns of new versus recycled primary production in the terrestrial biosphere. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 12733-12737.	3.3	270
25	The biogeochemical heterogeneity of tropical forests. Trends in Ecology and Evolution, 2008, 23, 424-431.	4.2	266
26	NUTRIENT REGULATION OF ORGANIC MATTER DECOMPOSITION IN A TROPICAL RAIN FOREST. Ecology, 2006, 87, 492-503.	1.5	225
27	Plot-scale manipulations of organic matter inputs to soils correlate with shifts in microbial community composition in a lowland tropical rain forest. Soil Biology and Biochemistry, 2010, 42, 2153-2160.	4.2	223
28	The earliest stages of ecosystem succession in high-elevation (5000 metres above sea level), recently deglaciated soils. Proceedings of the Royal Society B: Biological Sciences, 2008, 275, 2793-2802.	1.2	222
29	Linking environmental nutrient enrichment and disease emergence in humans and wildlife. Ecological Applications, 2010, 20, 16-29.	1.8	213
30	Composition, Dynamics, and Fate of Leached Dissolved Organic Matter in Terrestrial Ecosystems: Results from a Decomposition Experiment. Ecosystems, 2004, 7, 175.	1.6	211
31	Multiâ€element regulation of the tropical forest carbon cycle. Frontiers in Ecology and the Environment, 2011, 9, 9-17.	1.9	204
32	Stoichiometric patterns in foliar nutrient resorption across multiple scales. New Phytologist, 2012, 196, 173-180.	3.5	190
33	Bacterial community structure and function change in association with colonizer plants during early primary succession in a glacier forefield. Soil Biology and Biochemistry, 2012, 46, 172-180.	4.2	185
34	Controls over leaf litter decomposition in wet tropical forests. Ecology, 2009, 90, 3333-3341.	1.5	176
35	Litter quality versus soil microbial community controls over decomposition: a quantitative analysis. Oecologia, 2014, 174, 283-294.	0.9	169
36	Experimental drought in a tropical rain forest increases soil carbon dioxide losses to the atmosphere. Ecology, 2010, 91, 2313-2323.	1.5	155

#	Article	IF	Citations
37	Experimental litterfall manipulation drives large and rapid changes in soil carbon cycling in a wet tropical forest. Global Change Biology, 2012, 18, 2969-2979.	4.2	152
38	Do we need to understand microbial communities to predict ecosystem function? A comparison of statistical models of nitrogen cycling processes. Soil Biology and Biochemistry, 2014, 68, 279-282.	4.2	143
39	Spatially robust estimates of biological nitrogen (N) fixation imply substantial human alteration of the tropical N cycle. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 8101-8106.	3.3	138
40	Interactions among nitrogen fixation and soil phosphorus acquisition strategies in lowland tropical rain forests. Ecology Letters, 2014, 17, 1282-1289.	3.0	138
41	Controls Over Leaf Litter and Soil Nitrogen Fixation in Two Lowland Tropical Rain Forests. Biotropica, 2007, 39, 585-592.	0.8	124
42	Microbial community shifts influence patterns in tropical forest nitrogen fixation. Oecologia, 2010, 164, 521-531.	0.9	120
43	Effects of model structural uncertainty on carbon cycle projections: biological nitrogen fixation as a case study. Environmental Research Letters, 2015, 10, 044016.	2.2	109
44	TREE SPECIES CONTROL RATES OF FREE-LIVING NITROGEN FIXATION IN A TROPICAL RAIN FOREST. Ecology, 2008, 89, 2924-2934.	1.5	107
45	Temperature and rainfall interact to control carbon cycling in tropical forests. Ecology Letters, 2017, 20, 779-788.	3.0	107
46	Nutrient Addition Dramatically Accelerates Microbial Community Succession. PLoS ONE, 2014, 9, e102609.	1.1	106
47	Microbial Consumption of Atmospheric Isoprene in a Temperate Forest Soil. Applied and Environmental Microbiology, 1998, 64, 172-177.	1.4	92
48	Organic matter inputs shift soil enzyme activity and allocation patterns in a wet tropical forest. Biogeochemistry, 2013, 114, 313-326.	1.7	91
49	Consumption of atmospheric isoprene in soil. Geophysical Research Letters, 1997, 24, 2379-2382.	1.5	89
50	Assessing nutrient limitation in complex forested ecosystems: alternatives to largeâ€scale fertilization experiments. Ecology, 2014, 95, 668-681.	1.5	87
51	Topographic controls on soil nitrogen availability in a lowland tropical forest. Ecology, 2015, 96, 1561-1574.	1.5	87
52	Phosphorus, not nitrogen, limits plants and microbial primary producers following glacial retreat. Science Advances, 2018, 4, eaaq0942.	4.7	86
53	Relationships among phosphorus, molybdenum and free-living nitrogen fixation in tropical rain forests: results from observational and experimental analyses. Biogeochemistry, 2013, 114, 135-147.	1.7	80
54	Physical and biogeochemical controls over terrestrial ecosystem responses to nitrogen deposition. Biogeochemistry, 2001, 54, 1-39.	1.7	76

#	Article	IF	Citations
55	Functional shifts in unvegetated, perhumid, recently-deglaciated soils do not correlate with shifts in soil bacterial community composition. Journal of Microbiology, 2009, 47, 673-681.	1.3	70
56	Litter effects of two co-occurring alpine species on plant growth, microbial activity and immobilization of nitrogen. Oikos, 2004, 104, 336-344.	1.2	69
57	Exotic invasive plants increase productivity, abundance of ammoniaâ€oxidizing bacteria and nitrogen availability in intermountain grasslands. Journal of Ecology, 2016, 104, 994-1002.	1.9	66
58	Nutrient acquisition, soil phosphorus partitioning and competition among trees in a lowland tropical rain forest. New Phytologist, 2017, 214, 1506-1517.	3.5	65
59	SOIL MICROBIAL DYNAMICS AND BIOGEOCHEMISTRY IN TROPICAL FORESTS AND PASTURES, SOUTHWESTERN COSTA RICA. , 2003, 13, 314-326.		64
60	Throughfall exclusion and leaf litter addition drive higher rates of soil nitrous oxide emissions from a lowland wet tropical forest. Global Change Biology, 2011, 17, 3195-3207.	4.2	61
61	Soil abiotic and biotic controls on plant performance during primary succession in a glacial landscape. Journal of Ecology, 2016, 104, 1555-1565.	1.9	61
62	Are patterns in nutrient limitation belowground consistent with those aboveground: results from a 4 million year chronosequence. Biogeochemistry, 2011, 106, 323-336.	1.7	59
63	The Effects of Soil Bacterial Community Structure on Decomposition in a Tropical Rain Forest. Ecosystems, 2012, 15, 284-298.	1.6	59
64	Soil Microbial Dynamics in Costa Rica: Seasonal and Biogeochemical Constraints. Biotropica, 2004, 36, 184-195.	0.8	58
65	Management intensity alters decomposition via biological pathways. Biogeochemistry, 2011, 104, 365-379.	1.7	58
66	Nutrient limitation of soil microbial activity during the earliest stages of ecosystem development. Oecologia, 2017, 185, 513-524.	0.9	58
67	A comparison of plotâ€based satellite and Earth system model estimates of tropical forest net primary production. Global Biogeochemical Cycles, 2015, 29, 626-644.	1.9	55
68	Nitrogen Deposition In and Around an Intensive Agricultural District in Central New York. Journal of Environmental Quality, 1999, 28, 1585-1600.	1.0	54
69	Tropical tree species composition affects the oxidation of dissolved organic matter from litter. Biogeochemistry, 2008, 88, 127-138.	1.7	54
70	Phosphorus Cycling in Tropical Forests Growing on Highly Weathered Soils. Soil Biology, 2011, , 339-369.	0.6	47
71	Unexpected changes in soil phosphorus dynamics along pasture chronosequences in the humid tropics. Journal of Geophysical Research, 2002, 107, LBA 34-1.	3.3	46
72	Using indirect methods to constrain symbiotic nitrogen fixation rates: a case study from an Amazonian rain forest. Biogeochemistry, 2010, 99, 1-13.	1.7	44

#	Article	IF	Citations
73	Biogeochemical drivers of microbial community convergence across actively retreating glaciers. Soil Biology and Biochemistry, 2016, 101, 74-84.	4.2	42
74	Organic forms dominate hydrologic nitrogen export from a lowland tropical watershed. Ecology, 2015, 96, 1229-1241.	1.5	40
75	Effects of canopy tree species on belowground biogeochemistry in a lowland wet tropical forest. Soil Biology and Biochemistry, 2013, 58, 61-69.	4.2	38
76	Experimental removal and addition of leaf litter inputs reduces nitrate production and loss in a lowland tropical forest. Biogeochemistry, 2013, 113, 629-642.	1.7	36
77	Climate, Topography, and Canopy Chemistry Exert Hierarchical Control Over Soil N Cycling in a Neotropical Lowland Forest. Ecosystems, 2017, 20, 1089-1103.	1.6	33
78	Invasive plant-derived dissolved organic matter alters microbial communities and carbon cycling in soils. Soil Biology and Biochemistry, 2021, 156, 108191.	4.2	31
79	Agricultural conversion without external water and nutrient inputs reduces terrestrial vegetation productivity. Geophysical Research Letters, 2014, 41, 449-455.	1.5	29
80	Nutrient acquisition strategies augment growth in tropical N ₂ â€fixing trees in nutrientâ€poor soil and under elevated <scp>CO</scp> ₂ . Ecology, 2019, 100, e02646.	1.5	27
81	Estimating phosphorus availability for microbial growth in an emerging landscape. Geoderma, 2011, 163, 135-140.	2.3	26
82	Bioenergy Potential of the United States Constrained by Satellite Observations of Existing Productivity. Environmental Science & Expression (2012), 46, 3536-3544.	4.6	24
83	Remotely sensed canopy nitrogen correlates with nitrous oxide emissions in a lowland tropical rainforest. Ecology, 2018, 99, 2080-2089.	1.5	23
84	The effects of temperature on soil phosphorus availability and phosphatase enzyme activities: a cross-ecosystem study from the tropics to the Arctic. Biogeochemistry, 2020, 151, 113-125.	1.7	21
85	A simple method for determining limiting nutrients for photosynthetic crusts. Plant Ecology and Diversity, 2012, 5, 513-519.	1.0	20
86	Environmental controls on canopy foliar nitrogen distributions in a Neotropical lowland forest. Ecological Applications, 2016, 26, 2451-2464.	1.8	20
87	A roadmap for sampling and scaling biological nitrogen fixation in terrestrial ecosystems. Methods in Ecology and Evolution, 2021, 12, 1122-1137.	2.2	20
88	Biogeochemical recuperation of lowland tropical forest during succession. Ecology, 2019, 100, e02641.	1.5	19
89	Leaf litter inputs reinforce islands of nitrogen fertility in a lowland tropical forest. Biogeochemistry, 2020, 147, 293-306.	1.7	19
90	Modest Gaseous Nitrogen Losses Point to Conservative Nitrogen Cycling in a Lowland Tropical Forest Watershed. Ecosystems, 2018, 21, 901-912.	1.6	18

#	Article	IF	CITATIONS
91	Forest restoration treatments have subtle longâ€term effects on soil CÂand N cycling in mixed conifer forests. Ecological Applications, 2016, 26, 1503-1516.	1.8	17
92	Engaging Communities and Climate Change Futures with Multi-Scale, Iterative Scenario Building (MISB) in the Western United States. Human Organization, 2016, 75, 33-46.	0.2	17
93	Leaf-cutter ants engineer large nitrous oxide hot spots in tropical forests. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20182504.	1.2	15
94	Palm oil wastewater methane emissions and bioenergy potential. Nature Climate Change, 2014, 4, 151-152.	8.1	13
95	Nitrogen fixation and foliar nitrogen do not predict phosphorus acquisition strategies in tropical trees. Journal of Ecology, 2019, 107, 118-126.	1.9	13
96	Litter inputs drive patterns of soil nitrogen heterogeneity in a diverse tropical forest: Results from a litter manipulation experiment. Soil Biology and Biochemistry, 2021, 158, 108247.	4.2	13
97	Nitrogen Cycling Responses to Mountain Pine Beetle Disturbance in a High Elevation Whitebark Pine Ecosystem. PLoS ONE, 2013, 8, e65004.	1.1	12
98	Topographic distributions of emergent trees in tropical forests of the Osa Peninsula, Costa Rica. Ecography, 2017, 40, 829-839.	2.1	10
99	Greater stem growth, woody allocation, and aboveground biomass in Paleotropical forests than in Neotropical forests. Ecology, 2019, 100, e02589.	1.5	7
100	Reply to 'Land unlikely to become large carbon source'. Nature Geoscience, 2015, 8, 893-894.	5.4	4
101	Drought and tropical soil emissions. Nature, 2012, 489, 211-212.	13.7	2
102	How Much is too Much? Nitrogen Critical Loads and Eutrophication and Acidification in Oligotrophic Ecosystems., 2014,, 305-310.		1