## Pi Wang

## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6608386/publications.pdf Version: 2024-02-01



**Ρι \λ/**ΔΝΟ

| #  | Article                                                                                                                                                                                                                        | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Highly emissive platinum(II) metallacages. Nature Chemistry, 2015, 7, 342-348.                                                                                                                                                 | 13.6 | 597       |
| 2  | Functional Supramolecular Polymeric Networks: The Marriage of Covalent Polymers and<br>Macrocycle-Based Host–Guest Interactions. Chemical Reviews, 2020, 120, 6070-6123.                                                       | 47.7 | 466       |
| 3  | Host–guest complexation induced emission: a pillar[6]arene-based complex with intense fluorescence<br>in dilute solution. Chemical Communications, 2014, 50, 5017.                                                             | 4.1  | 119       |
| 4  | A novel fluorescent probe for detecting paraquat and cyanide in water based on<br>pillar[5]arene/10-methylacridinium iodide molecular recognition. Chemical Communications, 2014, 50,<br>5064-5067.                            | 4.1  | 96        |
| 5  | Cu(II) Ion-Responsive Self-Assembly Based on a Water-Soluble Pillar[5]arene and a Rhodamine<br>B-Containing Amphiphile in Aqueous Media. Organic Letters, 2017, 19, 202-205.                                                   | 4.6  | 53        |
| 6  | A Linear AIE Supramolecular Polymer Based on a Salicylaldehyde Azine-Containing Pillararene and Its<br>Reversible Cross-Linking by Cu <sup>II</sup> and Cyanide. Inorganic Chemistry, 2019, 58, 2252-2256.                     | 4.0  | 48        |
| 7  | A novel supramolecular polymer gel constructed by crosslinking pillar[5]arene-based supramolecular<br>polymers through metal–ligand interactions. Chemical Communications, 2015, 51, 17431-17434.                              | 4.1  | 32        |
| 8  | A fluorescent supramolecular crosslinked polymer gel formed by crown ether based host-guest<br>interactions and aggregation induced emission. Chinese Journal of Polymer Science (English Edition),<br>2015, 33, 890-898.      | 3.8  | 31        |
| 9  | Dual-Responsive [2]Pseudorotaxane On the basis of a pH-Sensitive Pillar[5]arene and Its Application in the Fabrication of Metallosupramolecular Polypseudorotaxane. Macromolecules, 2018, 51, 2716-2722.                       | 4.8  | 29        |
| 10 | Acidic microenvironment triggered release of a Cys probe from the cavity of a water-soluble pillar[5]arene. Chemical Communications, 2014, 50, 13114-13116.                                                                    | 4.1  | 26        |
| 11 | A H <sub>2</sub> S and I <sup>â^`</sup> dual-responsive supramolecular polymer constructed <i>via</i> pillar[5]arene-based host–guest interactions and metal coordination. Organic Chemistry Frontiers,<br>2018, 5, 1297-1302. | 4.5  | 26        |
| 12 | A multistimuliâ€responsive supramolecular polymer constructed by crown etherâ€based molecular<br>recognition and disulfide bond connection. Journal of Polymer Science Part A, 2015, 53, 2079-2084.                            | 2.3  | 16        |
| 13 | Controlling the photochemical reaction of an azastilbene derivative in water using a water-soluble pillar[6]arene. Organic and Biomolecular Chemistry, 2017, 15, 7618-7622.                                                    | 2.8  | 14        |
| 14 | A [2]pseudorotaxane based on a pillar[6]arene and its application in the construction of a metallosupramolecular polymer. Dalton Transactions, 2019, 48, 9954-9958.                                                            | 3.3  | 12        |
| 15 | Gemini-Type Supramolecular Amphiphile Based on a Water-Soluble Pillar[5]arene and an Azastilbene<br>Guest and Its Application in Stimuli-Responsive Self-Assemblies. Langmuir, 2019, 35, 8383-8388.                            | 3.5  | 12        |
| 16 | A novel supramolecular system with multiple fluorescent states constructed by orthogonal self-assembly. Polymer Chemistry, 2016, 7, 3827-3831.                                                                                 | 3.9  | 11        |
| 17 | A hydrogen sulfide-sensitive supramolecular polymer constructed by crown ether-based host–guest interaction and Ag-coordination. Sensors and Actuators B: Chemical, 2019, 279, 197-203.                                        | 7.8  | 11        |
| 18 | Construction of a pillararene-based supramolecular polymer network and its application in efficient removal of dyes from water. Dalton Transactions, 2022, 51, 910-917.                                                        | 3.3  | 7         |

| #  | Article                                                                                                                                                                                                       | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | A dimethoxypillar[5]arene/azastilbene host–guest recognition motif and its applications in the fabrication of polypseudorotaxanes. Organic and Biomolecular Chemistry, 2019, 17, 6038-6042.                   | 2.8 | 5         |
| 20 | pH-Induced Transition Between Single-Chain Macrocyclic Amphiphile and [c2]Daisy Chain-Based<br>Bola-Type Amphiphile and the Related Self-Assembly Behavior in Water. Frontiers in Chemistry, 2020, 7,<br>894. | 3.6 | 4         |