
Mauro Petretta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6608341/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Scaffolds for Bone Tissue Engineering: State of the art and new perspectives. Materials Science and Engineering C, 2017, 78, 1246-1262.	3.8	919
2	Articular Cartilage Regeneration in Osteoarthritis. Cells, 2019, 8, 1305.	1.8	113
3	Three-Dimensional Bioprinting of Cartilage by the Use of Stem Cells: A Strategy to Improve Regeneration. Materials, 2018, 11, 1749.	1.3	73
4	Modeling and Fabrication of Silk Fibroin–Gelatin-Based Constructs Using Extrusion-Based Three-Dimensional Bioprinting. ACS Biomaterials Science and Engineering, 2021, 7, 3306-3320.	2.6	41
5	Investigating the Role of Sustained Calcium Release in Silk-Gelatin-Based Three-Dimensional Bioprinted Constructs for Enhancing the Osteogenic Differentiation of Human Bone Marrow Derived Mesenchymal Stromal Cells. ACS Biomaterials Science and Engineering, 2019, 5, 1518-1533.	2.6	35
6	Composite Scaffolds for Bone Tissue Regeneration Based on PCL and Mg-Containing Bioactive Glasses. Biology, 2021, 10, 398.	1.3	30
7	3D printing of PCL/nano-hydroxyapatite scaffolds derived from biogenic sources for bone tissue engineering. Sustainable Materials and Technologies, 2021, 29, e00318.	1.7	26
8	A Roadmap of In Vitro Models in Osteoarthritis: A Focus on Their Biological Relevance in Regenerative Medicine. Journal of Clinical Medicine, 2021, 10, 1920.	1.0	20
9	Multifunctional 3D-Printed Magnetic Polycaprolactone/Hydroxyapatite Scaffolds for Bone Tissue Engineering. Polymers, 2021, 13, 3825.	2.0	20
10	3D printing of musculoskeletal tissues: impact on safety and health at work. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2019, 82, 891-912.	1.1	18
11	Thermodynamics of water sorption in high performance glassy thermoplastic polymers. Frontiers in Chemistry, 2014, 2, 25.	1.8	15
12	Design of a novel procedure for the optimization of the mechanical performances of 3D printed scaffolds for bone tissue engineering combining CAD, Taguchi method and FEA. Medical Engineering and Physics, 2019, 69, 92-99.	0.8	14
13	The effect of silk–gelatin bioink and TGF-β3 on mesenchymal stromal cells in 3D bioprinted chondrogenic constructs: A proteomic study. Journal of Materials Research, 2021, 36, 4051-4067.	1.2	10
14	Water sorption thermodynamics in poly(propylene sebacate). Polymer, 2016, 97, 346-361.	1.8	8
15	Cartilage Tissue Engineering by Extrusion Bioprinting: Process Analysis, Risk Evaluation, and Mitigation Strategies. Materials, 2021, 14, 3528.	1.3	8