Yanhong Tang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6608136/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Direct Electrodeposition of Graphene Enabling the Oneâ€Step Synthesis of Graphene–Metal Nanocomposite Films. Small, 2011, 7, 1203-1206.	10.0	355
2	Efficient heavy metal removal from industrial melting effluent using fixed-bed process based on porous hydrogel adsorbents. Water Research, 2018, 131, 246-254.	11.3	291
3	Amino siloxane oligomer-linked graphene oxide as an efficient adsorbent for removal of Pb(II) from wastewater. Journal of Hazardous Materials, 2014, 274, 145-155.	12.4	238
4	A highly efficient polyampholyte hydrogel sorbent based fixed-bed process for heavy metal removal in actual industrial effluent. Water Research, 2016, 89, 151-160.	11.3	213
5	Fast adsorption of heavy metal ions by waste cotton fabrics based double network hydrogel and influencing factors insight. Journal of Hazardous Materials, 2018, 344, 1034-1042.	12.4	149
6	Efficient removal of arsenic from groundwater using iron oxide nanoneedle array-decorated biochar fibers with high Fe utilization and fast adsorption kinetics. Water Research, 2019, 167, 115107.	11.3	142
7	A double network gel as low cost and easy recycle adsorbent: Highly efficient removal of Cd(II) and Pb(II) pollutants from wastewater. Journal of Hazardous Materials, 2015, 300, 153-160.	12.4	139
8	Perfect inhibition of CdS photocorrosion by graphene sheltering engineering on TiO ₂ nanotube array for highly stable photocatalytic activity. Physical Chemistry Chemical Physics, 2014, 16, 25321-25329.	2.8	125
9	Magnetic TiO2-graphene composite as a high-performance and recyclable platform for efficient photocatalytic removal of herbicides from water. Journal of Hazardous Materials, 2013, 252-253, 115-122.	12.4	122
10	Fe ₂ P/reduced graphene oxide/Fe ₂ P sandwich-structured nanowall arrays: a high-performance non-noble-metal electrocatalyst for hydrogen evolution. Journal of Materials Chemistry A, 2017, 5, 8608-8615.	10.3	118
11	Rapid and efficient treatment of wastewater with high-concentration heavy metals using a new type of hydrogel-based adsorption process. Bioresource Technology, 2016, 219, 451-457.	9.6	106
12	Pb(<scp>ii</scp>), Cu(<scp>ii</scp>) and Cd(<scp>ii</scp>) removal using a humic substance-based double network hydrogel in individual and multicomponent systems. Journal of Materials Chemistry A, 2018, 6, 20110-20120.	10.3	106
13	Porous nitrogen-rich carbon materials from carbon self-repairing g-C ₃ N ₄ assembled with graphene for high-performance supercapacitor. Journal of Materials Chemistry A, 2016, 4, 14307-14315.	10.3	93
14	Layer-by-layer strategy for adsorption capacity fattening of endophytic bacterial biomass for highly effective removal of heavy metals. Chemical Engineering Journal, 2014, 239, 312-321.	12.7	85
15	Efficient Photocatalytic Nitrogen Fixation: Enhanced Polarization, Activation, and Cleavage by Asymmetrical Electron Donation to NN Bond. Advanced Functional Materials, 2020, 30, 1906983.	14.9	82
16	Controllable growth of graphene/Cu composite and its nanoarchitecture-dependent electrocatalytic activity to hydrazine oxidation. Journal of Materials Chemistry A, 2014, 2, 4580-4587.	10.3	77
17	Static and continuous flow photoelectrocatalytic treatment of antibiotic wastewater over mesh of TiO2 nanotubes implanted with g-C3N4 nanosheets. Journal of Hazardous Materials, 2020, 384, 121248.	12.4	74
18	Deep Dehalogenation of Florfenicol Using Crystalline CoP Nanosheet Arrays on a Ti Plate via Direct Cathodic Reduction and Atomic H. Environmental Science & Technology, 2019, 53, 11932-11940.	10.0	67

Yanhong Tang

#	Article	IF	CITATIONS
19	Flexible Ti ₃ C ₂ T <i>_x</i> @Al electrodes with Ultrahigh Areal Capacitance: In Situ Regulation of Interlayer Conductivity and Spacing. Advanced Functional Materials, 2018, 28, 1803196.	14.9	66
20	Polyaniline-Reduced Graphene Oxide Hybrid Nanosheets with Nearly Vertical Orientation Anchoring Palladium Nanoparticles for Highly Active and Stable Electrocatalysis. ACS Applied Materials & Interfaces, 2016, 8, 169-176.	8.0	61
21	Ultrahigh Areal Capacitance of Flexible MXene Electrodes: Electrostatic and Steric Effects of Terminations. Chemistry of Materials, 2020, 32, 8257-8265.	6.7	50
22	Oneâ€6tep Electrodeposition to Layerâ€by‣ayer Graphene–Conductingâ€Polymer Hybrid Films. Macromolecular Rapid Communications, 2012, 33, 1780-1786.	3.9	45
23	Tuning the Oxidation State of Cu Electrodes for Selective Electrosynthesis of Ammonia from Nitrate. ACS Applied Materials & Interfaces, 2021, 13, 52469-52478.	8.0	43
24	Palladium Nanoparticles Supported on Vertically Oriented Reduced Graphene Oxide for Methanol Electroâ€Oxidation. ChemSusChem, 2014, 7, 2907-2913.	6.8	40
25	Efficient Photocatalytic Hydrogen Evolution and CO ₂ Reduction: Enhanced Light Absorption, Charge Separation, and Hydrophilicity by Tailoring Terminal and Linker Units in g-C ₃ N ₄ . ACS Applied Materials & Interfaces, 2020, 12, 19607-19615.	8.0	40
26	Electrochemical synthesis of polyaniline in surface-attached poly(acrylic acid) network, and its application to the electrocatalytic oxidation of ascorbic acid. Mikrochimica Acta, 2010, 168, 231-237.	5.0	35
27	Filter-membrane treatment of flowing antibiotic-containing wastewater through peroxydisulfate-coupled photocatalysis to reduce resistance gene and microbial inhibition during biological treatment. Water Research, 2021, 207, 117819.	11.3	35
28	Direct electrodeposition of a biocomposite consisting of reduced graphene oxide, chitosan and glucose oxidase on a glassy carbon electrode for direct sensing of glucose. Mikrochimica Acta, 2013, 180, 127-135.	5.0	33
29	A glassy carbon electrode modified with graphene, gold nanoparticles and chitosan for ultrasensitive determination of lead(II). Mikrochimica Acta, 2013, 180, 555-562.	5.0	32
30	Threeâ€Dimensional Nitrogenâ€Doped Reduced Graphene Oxide–Carbon Nanotubes Architecture Supporting Ultrafine Palladium Nanoparticles for Highly Efficient Methanol Electrooxidation. Chemistry - A European Journal, 2015, 21, 16631-16638.	3.3	32
31	Highly Efficient Continuous-Flow Electro-Fenton Treatment of Antibiotic Wastewater Using a Double-Cathode System. ACS Sustainable Chemistry and Engineering, 2021, 9, 1414-1422.	6.7	31
32	Reduced graphene oxide-based photocatalysts containing Ag nanoparticles on a TiO2 nanotube array. Journal of Materials Science, 2013, 48, 6203-6211.	3.7	26
33	CdSâ€Nanoparticlesâ€Decorated Perpendicular Hybrid of MoS ₂ and Nâ€Doped Graphene Nanosheets for Omnidirectional Enhancement of Photocatalytic Hydrogen Evolution. ChemCatChem, 2016, 8, 2557-2564.	3.7	25
34	Boosting Electrocatalytic Oxygen Evolution: Superhydrophilic/Superaerophobic Hierarchical Nanoneedle/Microflower Arrays of Ce <i>_x</i> Co _{3–<i>x</i>} O ₄ with Oxygen Vacancies. ACS Applied Materials & Interfaces, 2021, 13, 42843-42851.	8.0	23
35	In-situ potentiostatic activation to optimize electrodeposited cobalt-phosphide electrocatalyst for highly efficient hydrogen evolution in alkaline media. Chemical Physics Letters, 2017, 681, 90-94.	2.6	22
36	Electrocatalytic deep dehalogenation of florfenicol using Fe-doped CoP nanotubes array for blocking resistance gene expression and microbial inhibition during biochemical treatment. Water Research, 2021, 201, 117361.	11.3	19

YANHONG TANG

#	Article	IF	CITATIONS
37	Ultrasensitive electrochemiluminescent detection of pentachlorophenol using a multiple amplification strategy based on a hybrid material made from quantum dots, graphene, and carbon nanotubes. Mikrochimica Acta, 2014, 181, 759-765.	5.0	17
38	Efficient removal of heavy metals from melting effluent using multifunctional hydrogel adsorbents. Water Science and Technology, 2018, 78, 982-990.	2.5	12
39	Interface modification of polymer solar cells using graphene oxide and TiO ₂ NPs. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 585-590.	1.8	8
40	All-Biomass Double Network Gel: Highly Efficient Removal of Pb2+ and Cd2+ in Wastewater and Utilization of Spent Adsorbents. Journal of Polymers and the Environment, 2020, 28, 2669-2680.	5.0	8