List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6607601/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The COVID-19 pandemic: a target for surfactant therapy?. Expert Review of Respiratory Medicine, 2021, 15, 597-608.	1.0	44
2	National Preclinical Sepsis Platform: developing a framework for accelerating innovation in Canadian sepsis research. Intensive Care Medicine Experimental, 2021, 9, 14.	0.9	5
3	The effect of maternal protein restriction during perinatal life on the inflammatory response in pediatric rats. Canadian Journal of Physiology and Pharmacology, 2021, 99, 556-560.	0.7	Ο
4	PepBiotics, novel cathelicidin-inspired antimicrobials to fight pulmonary bacterial infections. Biochimica Et Biophysica Acta - General Subjects, 2021, 1865, 129951.	1.1	4
5	Exogenous Surfactant as a Pulmonary Delivery Vehicle for Budesonide In Vivo. Lung, 2020, 198, 909-916.	1.4	5
6	Novel Functions and Signaling Specificity for the GraS Sensor Kinase of Staphylococcus aureus in Response to Acidic pH. Journal of Bacteriology, 2020, 202, .	1.0	15
7	Protective effects of aerosolized pulmonary surfactant powder in a model of ventilator-induced lung injury. International Journal of Pharmaceutics, 2020, 583, 119359.	2.6	7
8	Optimizing Exogenous Surfactant as a Pulmonary Delivery Vehicle for Chicken Cathelicidin-2. Scientific Reports, 2020, 10, 9392.	1.6	5
9	The impact of maternal protein restriction during perinatal life on the response to a septic insult in adult rats. Journal of Developmental Origins of Health and Disease, 2020, , 1-8.	0.7	2
10	The effects of aging and exercise on lung mechanics, surfactant and alveolar macrophages. Experimental Lung Research, 2019, 45, 113-122.	0.5	11
11	Maternal protein restriction during perinatal life affects lung mechanics and the surfactant system during early postnatal life in female rats. PLoS ONE, 2019, 14, e0215611.	1.1	10
12	New insights into exogenous surfactant as a carrier of pulmonary therapeutics. Biochemical Pharmacology, 2019, 164, 64-73.	2.0	30
13	The effects of aging and exercise on lung mechanics, surfactant and alveolar macrophages. FASEB Journal, 2019, 33, 846.7.	0.2	0
14	Effective in vivo treatment of acute lung injury with helical, amphipathic peptoid mimics of pulmonary surfactant proteins. Scientific Reports, 2018, 8, 6795.	1.6	27
15	Dysfunction of pulmonary surfactant mediated by phospholipid oxidation is cholesterol-dependent. Biochimica Et Biophysica Acta - General Subjects, 2018, 1862, 1040-1049.	1.1	10
16	Autocrine GABA signaling distinctively regulates phenotypic activation of mouse pulmonary macrophages. Cellular Immunology, 2018, 332, 7-23.	1.4	32
17	The wet bridge transfer system: a novel tool to assess exogenous surfactant as a vehicle for intrapulmonary drug delivery. Discovery Medicine, 2018, 26, 207-218.	0.5	8
18	Lung Lavage and Surfactant Replacement During Ex Vivo Lung Perfusion for Treatment of Gastric Acid Aspiration–Induced Donor Lung Injury. Journal of Heart and Lung Transplantation, 2017, 36, 577-585.	0.3	66

#	Article	IF	CITATIONS
19	A respiratoryâ€gated microâ€ <scp>CT</scp> comparison of respiratory patterns in freeâ€breathing and mechanically ventilated rats. Physiological Reports, 2017, 5, e13074.	0.7	9
20	Impact of ventilation-induced lung injury on the structure and function of lamellar bodies. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2017, 313, L524-L533.	1.3	16
21	Killing of Pseudomonas aeruginosa by Chicken Cathelicidin-2 Is Immunogenically Silent, Preventing Lung Inflammation <i>In Vivo</i> . Infection and Immunity, 2017, 85, .	1.0	26
22	The Antibacterial and Anti-inflammatory Activity of Chicken Cathelicidin-2 combined with Exogenous Surfactant for the Treatment of Cystic Fibrosis-Associated Pathogens. Scientific Reports, 2017, 7, 15545.	1.6	18
23	Lung remodeling associated with recovery from acute lung injury. Cell and Tissue Research, 2017, 367, 495-509.	1.5	32
24	Voluntary running exercise protects against sepsis-induced early inflammatory and pro-coagulant responses in aged mice. Critical Care, 2017, 21, 210.	2.5	26
25	Alveolar injury and regeneration following deletion of ABCA3. JCI Insight, 2017, 2, .	2.3	37
26	The effect of matrix metalloproteinase-3 deficiency on pulmonary surfactant in a mouse model of acute lung injury. Canadian Journal of Physiology and Pharmacology, 2016, 94, 682-685.	0.7	5
27	Lack of matrix metalloproteinase 3 in mouse models of lung injury ameliorates the pulmonary inflammatory response in female but not in male mice. Experimental Lung Research, 2016, 42, 365-379.	0.5	4
28	The effect of diet-induced serum hypercholesterolemia on the surfactant system and the development of lung injury. Biochemistry and Biophysics Reports, 2016, 7, 180-187.	0.7	11
29	Decreased neuroinflammation correlates to higher vagus nerve activity fluctuations in near-term ovine fetuses: a case for the afferent cholinergic anti-inflammatory pathway?. Journal of Neuroinflammation, 2016, 13, 103.	3.1	49
30	Cholesterol-mediated surfactant dysfunction is mitigated by surfactant protein A. Biochimica Et Biophysica Acta - Biomembranes, 2015, 1848, 813-820.	1.4	17
31	Antimicrobial and Biophysical Properties of Surfactant Supplemented with an Antimicrobial Peptide for Treatment of Bacterial Pneumonia. Antimicrobial Agents and Chemotherapy, 2015, 59, 3075-3083.	1.4	47
32	Apolipoprotein E-Deficient Mice Are Susceptible to the Development of Acute Lung Injury. Respiration, 2014, 87, 416-427.	1.2	29
33	The effects of exogenous surfactant administration on ventilation-induced inflammation in mouse models of lung injury. BMC Pulmonary Medicine, 2013, 13, 67.	0.8	12
34	Specific cleavage of the lung surfactant protein A by human cathepsin S may impair its antibacterial properties. International Journal of Biochemistry and Cell Biology, 2013, 45, 1701-1709.	1.2	33
35	Adaptations to hibernation in lung surfactant composition of 13-lined ground squirrels influence surfactant lipid phase segregation properties. Biochimica Et Biophysica Acta - Biomembranes, 2013, 1828, 1707-1714.	1.4	24
36	Lung-Derived Mediators Induce Cytokine Production in Downstream Organs via anNF-κB-Dependent Mechanism. Mediators of Inflammation, 2013, 2013, 1-10.	1.4	13

#	Article	IF	CITATIONS
37	Human Alveolar Epithelial Cells Attenuate Pulmonary Microvascular Endothelial Cell Permeability under Septic Conditions. PLoS ONE, 2013, 8, e55311.	1.1	37
38	Improvement to the surface tension reducing capability of human pulmonary surfactant with elevated levels of cholesterol via addition of surfactant protein A. FASEB Journal, 2013, 27, 723.8.	0.2	0
39	Investigating the effect of temperature on large aggregate conversion of surfactant from ground squirrels. FASEB Journal, 2013, 27, 723.10.	0.2	0
40	Hypercholesterolemia does not affect pulmonary surfactant or the development of acute lung injury in rats. FASEB Journal, 2013, 27, 723.9.	0.2	0
41	Surfactant protein B inhibits secretory phospholipase A2 hydrolysis of surfactant phospholipids. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2012, 302, L257-L265.	1.3	24
42	A modified squeeze-out mechanism for generating high surface pressures with pulmonary surfactant. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 1225-1234.	1.4	80
43	Adaptation to low body temperature influences pulmonary surfactant composition thereby increasing fluidity while maintaining appropriately ordered membrane structure and surface activity. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 1581-1589.	1.4	53
44	The Impact of Intermittent Umbilical Cord Occlusions on the Inflammatory Response in Pre-Term Fetal Sheep. PLoS ONE, 2012, 7, e39043.	1.1	13
45	A ToF-SIMS study of the lateral organization of lipids and proteins in pulmonary surfactant systems. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 614-621.	1.4	14
46	Swept under the carpet? The role of mucociliary clearance in ventilator-induced lung injury. Intensive Care Medicine, 2011, 37, 4-6.	3.9	1
47	Atomic force microscopy analysis of rat pulmonary surfactant films. Biophysical Chemistry, 2011, 158, 119-125.	1.5	12
48	The Effect of Tidal Volume on Systemic Inflammation in Acid-Induced Lung Injury. Respiration, 2011, 81, 333-342.	1.2	15
49	The biological effects of lung-derived mediators on the liver. Experimental Lung Research, 2011, 37, 419-426.	0.5	2
50	Recent advances in alveolar biology: Some new looks at the alveolar interface. Respiratory Physiology and Neurobiology, 2010, 173, S55-S64.	0.7	48
51	Systemic and cerebral inflammatory response to umbilical cord occlusions with worsening acidosis in the ovine fetus. American Journal of Obstetrics and Gynecology, 2010, 202, 82.e1-82.e9.	0.7	43
52	IL-6 and TNFα across the umbilical circulation in term pregnancies: Relationship with labour events. Early Human Development, 2010, 86, 113-117.	0.8	40
53	Surfactant protein-A reduces translocation of mediators from the lung into the circulation. Experimental Lung Research, 2010, 36, 431-439.	0.5	5
54	Role of cholesterol in the biophysical dysfunction of surfactant in ventilator-induced lung injury. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2010, 298, L117-L125.	1.3	65

#	Article	IF	CITATIONS
55	High-frequency oscillation and surfactant treatment in an acid aspiration model. Canadian Journal of Physiology and Pharmacology, 2010, 88, 14-20.	0.7	12
56	Quantifying lung morphology with respiratory-gated micro-CT in a murine model of emphysema. Physics in Medicine and Biology, 2009, 54, 2121-2130.	1.6	33
57	THE EFFECTS OF HYPEROXIA EXPOSURE ON LUNG FUNCTION AND PULMONARY SURFACTANT IN A RAT MODEL OF ACUTE LUNG INJURY. Experimental Lung Research, 2009, 35, 380-398.	0.5	28
58	Mediators released from LPS-challenged lungs induce inflammatory responses in liver vascular endothelial cells and neutrophilic leukocytes. American Journal of Physiology - Renal Physiology, 2009, 297, G1066-G1076.	1.6	27
59	ELEVATED ENDOGENOUS SURFACTANT REDUCES INFLAMMATION IN AN ACUTE LUNG INJURY MODEL. Experimental Lung Research, 2009, 35, 591-604.	0.5	21
60	Atomic Force Microscopy Studies of Functional and Dysfunctional Pulmonary Surfactant Films. I. Micro- and Nanostructures of Functional Pulmonary Surfactant Films and the Effect of SP-A. Biophysical Journal, 2008, 94, 3549-3564.	0.2	60
61	Atomic Force Microscopy Studies of Functional and Dysfunctional Pulmonary Surfactant Films, II: Albumin-Inhibited Pulmonary Surfactant Films and the Effect of SP-A. Biophysical Journal, 2008, 95, 2779-2791.	0.2	39
62	Current perspectives in pulmonary surfactant — Inhibition, enhancement and evaluation. Biochimica Et Biophysica Acta - Biomembranes, 2008, 1778, 1947-1977.	1.4	436
63	Identification of Oxidative Stress and Toll-like Receptor 4 Signaling as a Key Pathway of Acute Lung Injury. Cell, 2008, 133, 235-249.	13.5	1,164
64	Protective effects of elevated endogenous surfactant pools to injurious mechanical ventilation. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2008, 294, L724-L732.	1.3	13
65	Alterations to surfactant precede physiological deterioration during high tidal volume ventilation. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2008, 294, L974-L983.	1.3	36
66	The effects of long-term conventional mechanical ventilation on the lungs of adult rats*. Critical Care Medicine, 2008, 36, 2381-2387.	0.4	41
67	Reply to Huang. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2008, 294, L816-L816.	1.3	1
68	Contribution of alveolar macrophages to the response of the TIMP-3 null lung during a septic insult. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2007, 293, L779-L789.	1.3	21
69	LUNG MECHANICS IN THE TIMP3 NULL MOUSE AND ITS RESPONSE TO MECHANICAL VENTILATION. Experimental Lung Research, 2007, 33, 99-113.	0.5	16
70	The anatomy, physics, and physiology of gas exchange surfaces: is there a universal function for pulmonary surfactant in animal respiratory structures?. Integrative and Comparative Biology, 2007, 47, 610-627.	0.9	39
71	In vivo characterization of lung morphology and function in anesthetized free-breathing mice using micro-computed tomography. Journal of Applied Physiology, 2007, 102, 2046-2055.	1.2	64
72	Alveolar macrophage depletion is associated with increased surfactant pool sizes in adult rats. Journal of Applied Physiology, 2007, 103, 637-645.	1.2	38

#	Article	IF	CITATIONS
73	Effect of Cholesterol on the Biophysical and Physiological Properties of a Clinical Pulmonary Surfactant. Biophysical Journal, 2007, 93, 1391-1401.	0.2	75
74	INTERLEUKIN-6 HAS NO EFFECT ON SURFACTANT OR LUNG FUNCTION IN DIFFERENT LUNG INSULTS. Experimental Lung Research, 2006, 32, 27-42.	0.5	4
75	Pre-emptive and continuous inhaled NO counteracts the cardiopulmonary consequences of extracorporeal circulation in a pig model. Nitric Oxide - Biology and Chemistry, 2006, 14, 261-271.	1.2	5
76	The Future of Surfactant Therapy during ALI/ARDS. Seminars in Respiratory and Critical Care Medicine, 2006, 27, 377-388.	0.8	39
77	Physiological effects of oxidized exogenous surfactant in vivo: effects of high tidal volume and surfactant protein A. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2006, 291, L703-L709.	1.3	17
78	Pseudomonas aeruginosa protease IV degrades surfactant proteins and inhibits surfactant host defense and biophysical functions. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2005, 288, L409-L418.	1.3	103
79	Differential response of TIMP-3 null mice to the lung insults of sepsis, mechanical ventilation, and hyperoxia. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2005, 289, L244-L251.	1.3	19
80	Mechanisms responsible for surfactant changes in sepsis-induced lung injury. European Respiratory Journal, 2005, 26, 1074-1079.	3.1	12
81	PROTEIN INHIBITION OF SURFACTANT DURING MECHANICAL VENTILATION OF ISOLATED RAT LUNGS. Experimental Lung Research, 2005, 31, 745-758.	0.5	10
82	Physiological and inflammatory response to instillation of an oxidized surfactant in a rat model of surfactant deficiency. Journal of Applied Physiology, 2004, 96, 1674-1680.	1.2	17
83	Analyzing Surfactant Metabolism in Humans. American Journal of Respiratory and Critical Care Medicine, 2004, 170, 2-3.	2.5	1
84	Effect of Acute Lung Injury on Structure and Function of Pulmonary Surfactant Films. American Journal of Respiratory Cell and Molecular Biology, 2004, 30, 641-650.	1.4	65
85	Ventilation and oxygen: Just what the doctor orderedUnfortunately*. Critical Care Medicine, 2004, 32, 2556-2557.	0.4	4
86	Hyperoxia exposure impairs surfactant function and metabolism. Critical Care Medicine, 2004, 32, 1155-1160.	0.4	77
87	Host response to intratracheally instilled bacteria in ventilated and nonventilated rats. Critical Care Medicine, 2004, 32, 2502-2507.	0.4	15
88	Phospholipid Metabolism in Lung Surfactant. Sub-Cellular Biochemistry, 2004, 37, 359-388.	1.0	49
89	The Role of Exogenous Surfactant in the Treatment of Acute Lung Injury. Annual Review of Physiology, 2003, 65, 613-642.	5.6	173
90	Carbon dioxide attenuates pulmonary impairment resulting from hyperventilation*. Critical Care Medicine, 2003, 31, 2634-2640.	0.4	96

#	Article	IF	CITATIONS
91	High-frequency oscillation and exogenous surfactant administration in lung-injured adult sheep. Critical Care Medicine, 2003, 31, 2520-2526.	0.4	5
92	High oxygen concentrations predispose mouse lungsto the deleterious effects of high stretch ventilation. Journal of Applied Physiology, 2003, 94, 975-982.	1.2	65
93	Early surfactant administration protects against lung dysfunction in a mouse model of ARDS. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2003, 284, L783-L790.	1.3	16
94	Negative impact of tissue inhibitor of metalloproteinase-3 null mutation on lung structure and function in response to sepsis. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2003, 285, L1222-L1232.	1.3	43
95	Evaluation of alveolar surfactant aggregatesin vitroandin vivo. European Respiratory Journal, 2002, 19, 41-46.	3.1	37
96	Sepsis and hyperoxia effects on the pulmonary surfactant system in wild-type and iNOS knockout mice. European Respiratory Journal, 2002, 20, 177-182.	3.1	17
97	Polyethylene Glycol (PEG) Attenuates Exogenous Surfactant in Lung-injured Adult Rabbits. American Journal of Respiratory and Critical Care Medicine, 2002, 165, 475-480.	2.5	20
98	Acute lung injury and lung transplantation influence in vitro subtype conversion of pulmonary surfactant. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2002, 282, L67-L74.	1.3	17
99	Mechanical ventilation of isolated rat lungs changes the structure and biophysical properties of surfactant. Journal of Applied Physiology, 2002, 92, 1169-1175.	1.2	54
100	Pulmonary surfactant and inflammation in septic adult mice: role of surfactant protein A. Journal of Applied Physiology, 2002, 92, 809-816.	1.2	12
101	Effects of alveolar surfactant aggregates on T-lymphocyte proliferation. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2001, 1535, 266-274.	1.8	8
102	SURFACTANT TREATMENT FOR VENTILATION-INDUCED LUNG INJURY IN RATS: EFFECTS ON LUNG COMPLIANCE AND CYTOKINES. Experimental Lung Research, 2001, 27, 505-520.	0.5	27
103	Mechanical ventilation of isolated septic rat lungs: effects on surfactant and inflammatory cytokines. Journal of Applied Physiology, 2001, 91, 811-820.	1.2	66
104	Effects of mechanical ventilation of isolated mouse lungs on surfactant and inflammatory cytokines. European Respiratory Journal, 2001, 17, 488-494.	3.1	60
105	Effects of High-Frequency Oscillation on Endogenous Surfactant in an Acute Lung Injury Model. American Journal of Respiratory and Critical Care Medicine, 2001, 164, 237-242.	2.5	29
106	Evaluation of Exogenous Surfactant in HCl-induced Lung Injury. American Journal of Respiratory and Critical Care Medicine, 2001, 163, 1135-1142.	2.5	34
107	Heat Stress Attenuates Ventilator-induced Lung Dysfunction in anEx vivoRat Lung Model. American Journal of Respiratory and Critical Care Medicine, 2001, 163, 1451-1456.	2.5	41
108	Pulmonary surfactant is altered during mechanical ventilation of isolated rat lung. Critical Care Medicine, 2000, 28, 2545-2551.	0.4	61

#	Article	IF	CITATIONS
109	Effects of ventilation on the surfactant system in sepsis-induced lung injury. Journal of Applied Physiology, 2000, 88, 401-408.	1.2	54
110	Alveolar environment influences the metabolic and biophysical properties of exogenous surfactants. Journal of Applied Physiology, 2000, 88, 1061-1071.	1.2	12
111	Dosing and Delivery of a Recombinant Surfactant in Lung-injured Adult Sheep. American Journal of Respiratory and Critical Care Medicine, 1999, 159, 741-747.	2.5	60
112	AN EXAMINATION OF THE DIFFERENT VARIABLES AFFECTING SURFACTANT AGGREGATE CONVERSION IN VITRO. Experimental Lung Research, 1999, 25, 127-141.	0.5	26
113	Dissociation of surfactant protein B from canine surfactant large aggregates during formation of small surfactant aggregates by in vitro surface area cycling. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 1999, 1440, 49-58.	1.2	14
114	The role of lipids in pulmonary surfactant. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 1998, 1408, 90-108.	1.8	610
115	Effects of Ventilation Strategies on the Efficacy of Exogenous Surfactant Therapy in a Rabbit Model of Acute Lung Injury. American Journal of Respiratory and Critical Care Medicine, 1998, 157, 149-155.	2.5	39
116	A current and future perspective of exogenous surfactant therapy for acute respiratory distress syndrome. Current Opinion in Critical Care, 1998, 4, 21-26.	1.6	4
117	Effects of surfactant distribution and ventilation strategies on efficacy of exogenous surfactant. Journal of Applied Physiology, 1998, 85, 676-684.	1.2	13
118	Potential Role for Pulmonary Surfactant in Lung Transplantation. , 1998, , 117-124.		0
119	Alterations of the Endogenous Surfactant System in Septic Adult Rats. American Journal of Respiratory and Critical Care Medicine, 1997, 156, 617-623.	2.5	57
120	Ventilation strategies affect surfactant aggregate conversion in acute lung injury American Journal of Respiratory and Critical Care Medicine, 1997, 155, 493-499.	2.5	99
121	Mitigation of injury in canine lung grafts by exogenous surfactant therapy. Journal of Thoracic and Cardiovascular Surgery, 1997, 113, 342-353.	0.4	40
122	Surfactant: Current and Potential Therapeutic Application in Infants and Adults. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 1996, 9, 143-154.	1.2	5
123	Evaluation of exogenous surfactant treatment strategies in an adult model of acute lung injury. Journal of Applied Physiology, 1996, 80, 1156-1164.	1.2	46
124	Timing of exogenous surfactant administration in a rabbit model of acute lung injury. Journal of Applied Physiology, 1996, 80, 1357-1364.	1.2	33
125	Surfactant-associated protein A is important for maintaining surfactant large-aggregate forms during surface-area cycling. Biochemical Journal, 1996, 313, 835-840.	1.7	59
126	Surfactant associated protein-A inhibits human lymphocyte proliferation and IL-2 production American Journal of Respiratory Cell and Molecular Biology, 1996, 15, 115-121.	1.4	105

#	Article	IF	CITATIONS
127	Evaluation of surfactant treatment strategies after prolonged graft storage in lung transplantation American Journal of Respiratory and Critical Care Medicine, 1996, 154, 98-104.	2.5	54
128	THE EFFECT OF LUNG PRESERVATION ON ALVEOLAR SURFACTANT. Transplantation, 1996, 62, 143.	0.5	5
129	Pulmonary surfactant subfractions in patients with the acute respiratory distress syndrome American Journal of Respiratory and Critical Care Medicine, 1995, 152, 1867-1871.	2.5	161
130	Altered alveolar surfactant is an early marker of acute lung injury in septic adult sheep American Journal of Respiratory and Critical Care Medicine, 1994, 150, 123-130.	2.5	90
131	Surfactant-associated proteins (SP-A, SP-B) are increased proportionally to alveolar phospholipids in sheep silicosis. Lung, 1993, 171, 63-74.	1.4	32
132	Alterations in Pulmonary Surfactant Composition and Activity after Experimental Lung Transplantation. The American Review of Respiratory Disease, 1993, 148, 208-215.	2.9	90
133	Surfactant analysis and replacement therapy: A future tool of the lung transplant surgeon?. Annals of Thoracic Surgery, 1991, 52, 1194-1200.	0.7	31
134	Rat liver and lung mitochondria do not incorporate radioactivity from glycerol-3-phosphate or CDP-choline into glycero-3-phosphocholine. Lipids and Lipid Metabolism, 1991, 1083, 211-216.	2.6	6
135	Examination of the potential role of the glycerophosphorylcholine (GPC) pathway in the biosynthesis of phosphatidylcholine by liver and lung. Lipids and Lipid Metabolism, 1989, 1005, 157-161.	2.6	9