

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6607495/publications.pdf Version: 2024-02-01

Vilin

#	Article	IF	CITATIONS
1	A role for the mitotic proteins Bub3 and BuGZ in transcriptional regulation of catalase-3 expression. PLoS Genetics, 2022, 18, e1010254.	1.5	1
2	Decoupling PER phosphorylation, stability and rhythmic expression from circadian clock function by abolishing PER-CK1 interaction. Nature Communications, 2022, 13, .	5.8	14
3	IMITATION SWITCH is required for normal chromatin structure and gene repression in PRC2 target domains. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	18
4	Effects of codon usage on gene expression are promoter context dependent. Nucleic Acids Research, 2021, 49, 818-831.	6.5	14
5	Genome-wide role of codon usage on transcription and identification of potential regulators. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	30
6	Reply to Qian and Zhang: Demonstration of the effect of codon usage on transcription by multiple approaches from fungi to animal cells. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, e2104896118.	3.3	0
7	Synonymous but Not Silent: The Codon Usage Code for Gene Expression and Protein Folding. Annual Review of Biochemistry, 2021, 90, 375-401.	5.0	73
8	FRQ-CK1 Interaction Underlies Temperature Compensation of the <i>Neurospora</i> Circadian Clock. MBio, 2021, 12, e0142521.	1.8	10
9	Codon usage and protein length-dependent feedback from translation elongation regulates translation initiation and elongation speed. Nucleic Acids Research, 2021, 49, 9404-9423.	6.5	22
10	Nonoptimal Codon Usage Is Critical for Protein Structure and Function of the Master General Amino Acid Control Regulator CPC-1. MBio, 2020, 11, .	1.8	20
11	A code within the genetic code: codon usage regulates co-translational protein folding. Cell Communication and Signaling, 2020, 18, 145.	2.7	113
12	Impaired function of the suprachiasmatic nucleus rescues the loss of body temperature homeostasis caused by time-restricted feeding. Science Bulletin, 2020, 65, 1268-1280.	4.3	13
13	Adaptation of codon usage to tRNA I34 modification controls translation kinetics and proteome landscape. PLoS Genetics, 2020, 16, e1008836.	1.5	30
14	eRF1 mediates codon usage effects on mRNA translation efficiency through premature termination at rare codons. Nucleic Acids Research, 2019, 47, 9243-9258.	6.5	41
15	FRQ-CK1 interaction determines the period of circadian rhythms in Neurospora. Nature Communications, 2019, 10, 4352.	5.8	42
16	Codon usage regulates human KRAS expression at both transcriptional and translational levels. Journal of Biological Chemistry, 2018, 293, 17929-17940.	1.6	43
17	Transcription factor CBF-1 is critical for circadian gene expression by modulating WHITE COLLAR complex recruitment to the frq locus. PLoS Genetics, 2018, 14, e1007570.	1.5	13
18	Codon usage biases co-evolve with transcription termination machinery to suppress premature cleavage and polyadenylation. ELife, 2018, 7, .	2.8	50

#	Article	IF	CITATIONS
19	DNA Replication Is Required for Circadian Clock Function by Regulating Rhythmic Nucleosome Composition. Molecular Cell, 2017, 67, 203-213.e4.	4.5	24
20	Codon usage regulates protein structure and function by affecting translation elongation speed in Drosophila cells. Nucleic Acids Research, 2017, 45, 8484-8492.	6.5	95
21	Distinct Roles of HDAC3 in the Core Circadian Negative Feedback Loop Are Critical for Clock Function. Cell Reports, 2016, 14, 823-834.	2.9	30
22	Codon usage is an important determinant of gene expression levels largely through its effects on transcription. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E6117-E6125.	3.3	326
23	Codon usage affects the structure and function of the <i>Drosophila</i> circadian clock protein PERIOD. Genes and Development, 2016, 30, 1761-1775.	2.7	73
24	Nonoptimal codon usage influences protein structure in intrinsically disordered regions. Molecular Microbiology, 2015, 97, 974-987.	1.2	99
25	Role for Protein Kinase A in the <i>Neurospora</i> Circadian Clock by Regulating White Collar-Independent <i>frequency</i> Transcription through Phosphorylation of RCM-1. Molecular and Cellular Biology, 2015, 35, 2088-2102.	1.1	27
26	Methods to Study Molecular Mechanisms of the Neurospora Circadian Clock. Methods in Enzymology, 2015, 551, 137-151.	0.4	5
27	Mechanism of siRNA production from repetitive DNA. Genes and Development, 2015, 29, 526-537.	2.7	34
28	Codon Usage Influences the Local Rate of Translation Elongation to Regulate Co-translational Protein Folding. Molecular Cell, 2015, 59, 744-754.	4.5	476
29	Histone H3K56 Acetylation Is Required for Quelling-induced Small RNA Production through Its Role in Homologous Recombination. Journal of Biological Chemistry, 2014, 289, 9365-9371.	1.6	16
30	Transcriptional interference by antisense RNA is required for circadian clock function. Nature, 2014, 514, 650-653.	13.7	92
31	Circadian Rhythms. , 2014, , 442-466.		1
32	Small RNA-Mediated Gene Silencing in Neurospora. , 2014, , 269-289.		5
33	Non-optimal codon usage affects expression, structure and function of clock protein FRQ. Nature, 2013, 495, 111-115.	13.7	357
34	Non-optimal codon usage is a mechanism to achieve circadian clock conditionality. Nature, 2013, 495, 116-120.	13.7	167
35	Transcription of the Major Neurospora crassa microRNA–Like Small RNAs Relies on RNA Polymerase III. PLoS Genetics, 2013, 9, e1003227.	1.5	38
36	Convergent Transcription Induces Dynamic DNA Methylation at disiRNA Loci. PLoS Genetics, 2013, 9, e1003761.	1.5	35

#	Article	IF	CITATIONS
37	Dual roles of FBXL3 in the mammalian circadian feedback loops are important for period determination and robustness of the clock. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 4750-4755.	3.3	44
38	Homologous recombination as a mechanism to recognize repetitive DNA sequences in an RNAi pathway. Genes and Development, 2013, 27, 145-150.	2.7	38
39	Suppression of WC-independent <i>frequency</i> transcription by RCO-1 is essential for <i>Neurospora</i> circadian clock. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E4867-74.	3.3	41
40	CATP is a critical component of the <i>Neurospora</i> circadian clock by regulating the nucleosome occupancy rhythm at the <i>frequency</i> locus. EMBO Reports, 2013, 14, 923-930.	2.0	34
41	The translin–TRAX complex (C3PO) is a ribonuclease in tRNA processing. Nature Structural and Molecular Biology, 2012, 19, 824-830.	3.6	30
42	RNA Interference Pathways in Fungi: Mechanisms and Functions. Annual Review of Microbiology, 2012, 66, 305-323.	2.9	228
43	Reconstitution of an Argonaute-Dependent Small RNA Biogenesis Pathway Reveals a Handover Mechanism Involving the RNA Exosome and the Exonuclease QIP. Molecular Cell, 2012, 46, 299-310.	4.5	41
44	Diverse Small Non-coding RNAs in RNA Interference Pathways. Methods in Molecular Biology, 2011, 764, 169-182.	0.4	56
45	RNA Interference in Fungi: Pathways, Functions, and Applications. Eukaryotic Cell, 2011, 10, 1148-1155.	3.4	191
46	Regulation of the Activity and Cellular Localization of the Circadian Clock Protein FRQ. Journal of Biological Chemistry, 2011, 286, 11469-11478.	1.6	43
47	RNA interference pathways in filamentous fungi. Cellular and Molecular Life Sciences, 2010, 67, 3849-3863.	2.4	86
48	Molecular mechanism of the Neurospora circadian oscillator. Protein and Cell, 2010, 1, 331-341.	4.8	16
49	Functional Significance of FRH in Regulating the Phosphorylation and Stability of Neurospora Circadian Clock Protein FRQ. Journal of Biological Chemistry, 2010, 285, 11508-11515.	1.6	71
50	The DNA/RNA-Dependent RNA Polymerase QDE-1 Generates Aberrant RNA and dsRNA for RNAi in a Process Requiring Replication Protein A and a DNA Helicase. PLoS Biology, 2010, 8, e1000496.	2.6	71
51	Diverse Pathways Generate MicroRNA-like RNAs and Dicer-Independent Small Interfering RNAs in Fungi. Molecular Cell, 2010, 38, 803-814.	4.5	361
52	Setting the pace of the <i>Neurospora</i> circadian clock by multiple independent FRQ phosphorylation events. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 10722-10727.	3.3	105
53	qiRNA is a new type of small interfering RNA induced by DNA damage. Nature, 2009, 459, 274-277.	13.7	278
54	The Exosome Regulates Circadian Gene Expression in a Posttranscriptional Negative Feedback Loop. Cell, 2009, 138, 1236-1246.	13.5	93

#	Article	lF	CITATIONS
55	Control of WHITE COLLAR localization by phosphorylation is a critical step in the circadian negative feedback process. EMBO Journal, 2008, 27, 3246-3255.	3.5	64
56	QIP, a putative exonuclease, interacts with the Neurospora Argonaute protein and facilitates conversion of duplex siRNA into single strands. Genes and Development, 2007, 21, 590-600.	2.7	107
57	Protein kinase A and casein kinases mediate sequential phosphorylation events in the circadian negative feedback loop. Genes and Development, 2007, 21, 3283-3295.	2.7	117
58	A Double-Stranded-RNA Response Program Important for RNA Interference Efficiency. Molecular and Cellular Biology, 2007, 27, 3995-4005.	1.1	72
59	The Neurospora crassa Circadian Clock. Advances in Genetics, 2007, 58, 25-66.	0.8	129
60	Molecular mechanism of suppression of circadian rhythms by a critical stimulus. EMBO Journal, 2006, 25, 5349-5357.	3.5	37
61	CKI and CKII mediate the FREQUENCY-dependent phosphorylation of the WHITE COLLAR complex to close the Neurospora circadian negative feedback loop. Genes and Development, 2006, 20, 2552-2565.	2.7	204
62	Circadian Rhythms in Neurospora crassa and Other Filamentous Fungi. Eukaryotic Cell, 2006, 5, 1184-1193.	3.4	124
63	Molecular mechanism of light responses in Neurospora: from light-induced transcription to photoadaptation. Genes and Development, 2005, 19, 2888-2899.	2.7	186
64	Analysis of Posttranslational Regulations in the Neurospora Circadian Clock. Methods in Enzymology, 2005, 393, 379-393.	0.4	21
65	Light-independent Phosphorylation of WHITE COLLAR-1 Regulates Its Function in the Neurospora Circadian Negative Feedback Loop. Journal of Biological Chemistry, 2005, 280, 17526-17532.	1.6	94
66	The COP9 signalosome regulates the Neurospora circadian clock by controlling the stability of the SCFFWD-1 complex. Genes and Development, 2005, 19, 1518-1531.	2.7	161
67	Regulation of the Neurospora circadian clock by an RNA helicase. Genes and Development, 2005, 19, 234-241.	2.7	187
68	Distinct roles for PP1 and PP2A in the Neurospora circadian clock. Genes and Development, 2004, 18, 255-260.	2.7	111
69	FWD1-mediated degradation of FREQUENCY in Neurospora establishes a conserved mechanism for circadian clock regulation. EMBO Journal, 2003, 22, 4421-4430.	3.5	158
70	Phosphorylation of FREQUENCY Protein by Casein Kinase II Is Necessary for the Function of the Neurospora Circadian Clock. Molecular and Cellular Biology, 2003, 23, 6221-6228.	1.1	86
71	Molecular Mechanisms of Entrainment in the Neurospora Circadian Clock. Journal of Biological Rhythms, 2003, 18, 195-205.	1.4	62
72	Functional conservation of light, oxygen, or voltage domains in light sensing. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 5938-5943.	3.3	142

#	Article	IF	CITATIONS
73	WHITE COLLAR-1, a Multifunctional NeurosporaProtein Involved in the Circadian Feedback Loops, Light Sensing, and Transcription Repression of wc-2. Journal of Biological Chemistry, 2003, 278, 3801-3808.	1.6	123
74	White Collar-1, a Circadian Blue Light Photoreceptor, Binding to the frequency Promoter. Science, 2002, 297, 815-819.	6.0	490
75	Regulation of the Neurospora circadian clock by casein kinase II. Genes and Development, 2002, 16, 994-1006.	2.7	137
76	PAS Domain-Mediated WC-1/WC-2 Interaction Is Essential for Maintaining the Steady-State Level of WC-1 and the Function of Both Proteins in Circadian Clock and Light Responses of Neurospora. Molecular and Cellular Biology, 2002, 22, 517-524.	1.1	160
77	White Collar-1, a DNA Binding Transcription Factor and a Light Sensor. Science, 2002, 297, 840-843.	6.0	401
78	Identification of a Calcium/Calmodulin-dependent Protein Kinase That Phosphorylates the Neurospora Circadian Clock Protein FREQUENCY. Journal of Biological Chemistry, 2001, 276, 41064-41072.	1.6	111
79	Alternative Initiation of Translation and Time-Specific Phosphorylation Yield Multiple Forms of the Essential Clock Protein FREQUENCY. Cell, 1997, 89, 469-476.	13.5	347
80	Thermally Regulated Translational Control of FRQ Mediates Aspects of Temperature Responses in the Neurospora Circadian Clock. Cell, 1997, 89, 477-486.	13.5	235