
Ning Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6607340/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Unraveling the interactions of reductants and reaction path over Cu-ZSM-5 for model coal-gas-SCR <i>via</i> a transient reaction study. Catalysis Science and Technology, 2022, 12, 823-833.	4.1	6
2	Rational Design of Zinc/Zeolite Catalyst: Selective Formation of <i>p</i> â€Xylene from Methanol to Aromatics Reaction. Angewandte Chemie - International Edition, 2022, 61, .	13.8	22
3	Constructing active copper species in Cu-zeolites for coal-gas-SCR and elucidating the synergistic catalytic function of CuO and Cu ²⁺ ion species. Environmental Science: Nano, 2022, 9, 2372-2387.	4.3	8
4	CO2 methanation over Ni/ZSM-5 catalysts: The effects of support morphology and La2O3 modification. Fuel, 2022, 324, 124679.	6.4	16
5	Plasma-assisted highly dispersed Pt single atoms on Ru nanoclusters electrocatalyst for pH-universal hydrogen evolution. Chemical Engineering Journal, 2022, 448, 137611.	12.7	34
6	Probing the Catalytic Active Sites of Mo/HZSM-5 and Their Deactivation during Methane Dehydroaromatization. Cell Reports Physical Science, 2021, 2, 100309.	5.6	17
7	Cold-plasma technique enabled supported Pt single atoms with tunable coordination for hydrogen evolution reaction. Applied Catalysis B: Environmental, 2021, 285, 119861.	20.2	38
8	Facile one-pot synthesis of superfine palladium nanoparticles on polydopamine-functionalized carbon nanotubes as a nanocatalyst for the Heck reaction. Journal of Materials Science and Technology, 2021, 82, 197-206.	10.7	16
9	In situ Generation of Molybdenum Carbide in Zeolite for Methane Dehydroaromatization. Kinetics and Catalysis, 2021, 62, S48-S59.	1.0	1
10	Auto-thermal reforming of acetic acid for hydrogen production by ordered mesoporous Ni-xSm-Al-O catalysts: Effect of samarium promotion. Renewable Energy, 2020, 145, 2316-2326.	8.9	16
11	Auto-thermal reforming of acetic acid over hydrotalcites-derived co-based catalyst: A stable and anti-coking Co/Sr-Alx-O catalyst. Applied Catalysis B: Environmental, 2020, 267, 118370.	20.2	21
12	Direct Imaging of Atomically Dispersed Molybdenum that Enables Location of Aluminum in the Framework of Zeolite ZSMâ€5. Angewandte Chemie - International Edition, 2020, 59, 819-825.	13.8	125
13	Direct Imaging of Atomically Dispersed Molybdenum that Enables Location of Aluminum in the Framework of Zeolite ZSMâ€5. Angewandte Chemie, 2020, 132, 829-835.	2.0	33
14	Atomically dispersed metal sites stabilized on a nitrogen doped carbon carrier <i>via</i> N ₂ glow-discharge plasma. Chemical Communications, 2020, 56, 9198-9201.	4.1	7
15	Computational Study of Carbon-Doped Boron Nitride Nanotubes Loaded with Pd Atoms as Single-Atom Catalysts for Heck Reactions. ACS Applied Nano Materials, 2020, 3, 10905-10913.	5.0	3
16	Y-Zr-O solid solution supported Ni-based catalysts for hydrogen production via auto-thermal reforming of acetic acid. Applied Catalysis B: Environmental, 2020, 278, 119264.	20.2	29
17	Etchingâ€Doping Sedimentation Equilibrium Strategy: Accelerating Kinetics on Hollow Rhâ€Doped CoFe‣ayered Double Hydroxides for Water Splitting. Advanced Functional Materials, 2020, 30, 2003556.	14.9	117
18	Investigating the Origin of Enhanced C ₂₊ Selectivity in Oxide-/Hydroxide-Derived Copper Electrodes during CO ₂ Electroreduction. Journal of the American Chemical Society, 2020, 142, 4213-4222.	13.7	236

#	Article	IF	CITATIONS
19	A nitrogen-doped mesopore-dominated carbon electrode allied with anti-freezing EMIBF ₄ –GBL electrolyte for superior low-temperature supercapacitors. Journal of Materials Chemistry A, 2020, 8, 10386-10394.	10.3	21
20	Tuning the Metal–Support Interaction and Enhancing the Stability of Titania-Supported Cobalt Fischer–Tropsch Catalysts via Carbon Nitride Coating. ACS Catalysis, 2020, 10, 5554-5566.	11.2	39
21	The circular economy and carbon footprint: A systematic accounting for typical coal-fuelled power industrial parks. Journal of Cleaner Production, 2019, 229, 1262-1273.	9.3	36
22	Life cycle energy efficiency evaluation for coal development and utilization. Energy, 2019, 179, 1-11.	8.8	55
23	Highly selective conversion of methanol to propylene: design of an MFI zeolite with selective blockage of (010) surfaces. Nanoscale, 2019, 11, 8096-8101.	5.6	14
24	A multi-stage fluidized bed strategy for the enhanced conversion of methanol into aromatics. Chemical Engineering Science, 2019, 204, 1-8.	3.8	26
25	Phase control of 2D binary hydroxides nanosheets via controlling-release strategy for enhanced oxygen evolution reaction and supercapacitor performances. Journal of Energy Chemistry, 2019, 38, 26-33.	12.9	30
26	Arc-discharge synthesis of nitrogen-doped C embedded TiCN nanocubes with tunable dielectric/magnetic properties for electromagnetic absorbing applications. Nanoscale, 2019, 11, 19994-20005.	5.6	42
27	Modulation of b-axis thickness within MFI zeolite: Correlation with variation of product diffusion and coke distribution in the methanol-to-hydrocarbons conversion. Applied Catalysis B: Environmental, 2019, 243, 721-733.	20.2	71
28	Pd nanoparticles immobilized on carbon nanotubes with a polyaniline coaxial coating for the Heck reaction: coating thickness as the key factor influencing the efficiency and stability of the catalyst. Catalysis Science and Technology, 2018, 8, 1423-1434.	4.1	28
29	Crystal-plane effects of MFI zeolite in catalytic conversion of methanol to hydrocarbons. Journal of Catalysis, 2018, 360, 89-96.	6.2	58
30	Flexible metal-templated fabrication of mesoporous onion-like carbon and Fe ₂ O ₃ @N-doped carbon foam for electrochemical energy storage. Journal of Materials Chemistry A, 2018, 6, 13012-13020.	10.3	44
31	Layered perovskite-like La _{2â^'x} Ca _x NiO _{4±δ} derived catalysts for hydrogen production <i>via</i> auto-thermal reforming of acetic acid. Catalysis Science and Technology, 2018, 8, 3015-3024.	4.1	22
32	Regulation of Ni–CNT Interaction on Mn-Promoted Nickel Nanocatalysts Supported on Oxygenated CNTs for CO ₂ Selective Hydrogenation. ACS Applied Materials & Interfaces, 2018, 10, 41224-41236.	8.0	45
33	Cross oupled Macroâ€Mesoporous Carbon Network toward Record High Energyâ€Power Density Supercapacitor at 4 V. Advanced Functional Materials, 2018, 28, 1806153.	14.9	145
34	Life cycle carbon emission modelling of coal-fired power: Chinese case. Energy, 2018, 162, 841-852.	8.8	66
35	Synthesis of Core‧hell Structured MnO ₂ Petal Nanosheet@Carbon Sphere Composites and Their Application as Supercapacitor Electrodes. ChemistrySelect, 2018, 3, 9301-9307.	1.5	13
36	Analyzing transfer properties of zeolites using small-world networks. Nanoscale, 2018, 10, 16431-16433.	5.6	9

#	Article	IF	CITATIONS
37	Highly selective synthesis of large aromatic molecules with nano-zeolite: beyond the shape selectivity effect. RSC Advances, 2017, 7, 14309-14313.	3.6	15
38	High-stable α-phase NiCo double hydroxide microspheres via microwave synthesis for supercapacitor electrode materials. Chemical Engineering Journal, 2017, 316, 277-287.	12.7	118
39	Molecular insight into the enhancement of benzene-carbon nanotube interactions by surface modification for drug delivery systems (DDS). Applied Surface Science, 2017, 416, 757-765.	6.1	18
40	Seed-induced and additive-free synthesis of oriented nanorod-assembled meso/macroporous zeolites: toward efficient and cost-effective catalysts for the MTA reaction. Catalysis Science and Technology, 2017, 7, 5143-5153.	4.1	26
41	Dolomite-Derived Ni-Based Catalysts with Fe Modification for Hydrogen Production via Auto-Thermal Reforming of Acetic Acid. Catalysts, 2016, 6, 85.	3.5	19
42	Improvement of catalytic stability for CO 2 reforming of methane by copper promoted Ni-based catalyst derived from layered-double hydroxides. Journal of Energy Chemistry, 2016, 25, 1078-1085.	12.9	48
43	The influence of straight pore blockage on the selectivity of methanol to aromatics in nanosized Zn/ZSM-5: an atomic Cs-corrected STEM analysis study. RSC Advances, 2016, 6, 74797-74801.	3.6	48
44	Molded MFI nanocrystals as a highly active catalyst in a methanol-to-aromatics process. RSC Advances, 2016, 6, 81198-81202.	3.6	21
45	Fabrication and catalytic properties of three-dimensional ordered zeolite arrays with interconnected micro-meso-macroporous structure. Journal of Materials Chemistry A, 2016, 4, 10834-10841.	10.3	22
46	Mesoporous nickel catalyst supported on multi-walled carbon nanotubes for carbon dioxide methanation. International Journal of Hydrogen Energy, 2016, 41, 967-975.	7.1	109
47	Bayberry-like ZnO/MFI zeolite as high performance methanol-to-aromatics catalyst. Chemical Communications, 2016, 52, 2011-2014.	4.1	77
48	Crystal-plane effect of nanoscale CeO ₂ on the catalytic performance of Ni/CeO ₂ catalysts for methane dry reforming. Catalysis Science and Technology, 2016, 6, 3594-3605.	4.1	170
49	Mesoporous MgO synthesized by a homogeneous-hydrothermal method and its catalytic performance on gas-phase acetone condensation at low temperatures. Catalysis Communications, 2016, 74, 39-42.	3.3	29
50	An estimation of regional emission intensity of coal mine methane based on coefficientâ€intensity factor methodology using China as a case study. , 2015, 5, 437-448.		18
51	Facile microwave-assisted synthesis of sheet-like cobalt hydroxide for energy-storage application: Effect of the cobalt precursors. Journal of Alloys and Compounds, 2015, 644, 836-845.	5.5	14
52	Self-assembled Ni/NiO/RGO heterostructures for high-performance supercapacitors. RSC Advances, 2015, 5, 77958-77964.	3.6	67
53	In situ controllable assembly of layered-double-hydroxide-based nickel nanocatalysts for carbon dioxide reforming of methane. Catalysis Science and Technology, 2015, 5, 1588-1597.	4.1	60
54	Oneâ€pot Synthesis of Ordered Mesoporous NiCeAl Oxide Catalysts and a Study of Their Performance in Methane Dry Reforming. ChemCatChem, 2014, 6, 1470-1480.	3.7	38

#	Article	IF	CITATIONS
55	Centrifugation-free and high yield synthesis of nanosized H-ZSM-5 and its structure-guided aromatization of methanol to 1,2,4-trimethylbenzene. Journal of Materials Chemistry A, 2014, 2, 19797-19808.	10.3	76
56	Ni–Co bimetallic MgO-based catalysts for hydrogen production via steam reforming of acetic acid from bio-oil. International Journal of Hydrogen Energy, 2014, 39, 18688-18694.	7.1	54
57	Plasma-Treated Bimetallic Ni–Pt Catalysts Derived from Hydrotalcites for the Carbon Dioxide Reforming of Methane. Catalysis Letters, 2014, 144, 293-300.	2.6	35
58	Effect of nitrogen-containing groups on methane adsorption behaviors of carbon spheres. Journal of Analytical and Applied Pyrolysis, 2014, 107, 204-210.	5.5	30
59	A novel Ni–Mg–Al-LDHs/γ-Al2O3 Catalyst Prepared by in-situ synthesis method for CO2 reforming of CH4. Catalysis Communications, 2014, 45, 11-15.	3.3	29
60	Atmospheric pressure synthesis of nanosized ZSM-5 with enhanced catalytic performance for methanol to aromatics reaction. Catalysis Science and Technology, 2014, 4, 3840-3844.	4.1	72
61	Preparation and characterization of a plasma treated NiMgSBA-15 catalyst for methane reforming with CO2 to produce syngas. Catalysis Science and Technology, 2013, 3, 2278.	4.1	94
62	A comparison study on methane dry reforming with carbon dioxide over LaNiO3 perovskite catalysts supported on mesoporous SBA-15, MCM-41 and silica carrier. Catalysis Today, 2013, 212, 98-107.	4.4	181
63	Direct synthesis of c-axis oriented ZSM-5 nanoneedles from acid-treated kaolin clay. Journal of Materials Chemistry A, 2013, 1, 3272.	10.3	53
64	Synthesis, characterization and catalytic performance of MgO-coated Ni/SBA-15 catalysts for methane dry reforming to syngas and hydrogen. International Journal of Hydrogen Energy, 2013, 38, 9718-9731.	7.1	131
65	Remarkable carbon dioxide catalytic capture (CDCC) leading to solid-form carbon material via a new CVD integrated process (CVD-IP): An alternative route for CO2 sequestration. Journal of Energy Chemistry, 2013, 22, 136-144.	12.9	25
66	Facile Route for Synthesizing Ordered Mesoporous Ni–Ce–Al Oxide Materials and Their Catalytic Performance for Methane Dry Reforming to Hydrogen and Syngas. ACS Catalysis, 2013, 3, 1638-1651.	11.2	362
67	Fabrication of <i>c-</i> Axis Oriented ZSM-5 Hollow Fibers Based on an in Situ Solid–Solid Transformation Mechanism. Journal of the American Chemical Society, 2013, 135, 15322-15325.	13.7	110
68	Novel poly(ether ketone)arylates: Synthesis, characterization and properties. Journal of Applied Polymer Science, 2013, 129, 2393-2398.	2.6	5
69	Carbon dioxide reforming of methane for syngas production over La-promoted NiMgAl catalysts derived from hydrotalcites. Chemical Engineering Journal, 2012, 209, 623-632.	12.7	166
70	Synthesis, characterization and catalytic performances of Ce-SBA-15 supported nickel catalysts for methane dry reforming to hydrogen and syngas. International Journal of Hydrogen Energy, 2012, 37, 19-30.	7.1	245
71	Nickel-based perovskite catalysts with iron-doping via self-combustion for hydrogen production in auto-thermal reforming of Ethanol. International Journal of Hydrogen Energy, 2012, 37, 1272-1279.	7.1	35
72	Hydrogen Production by Ethanol Steam Reforming on NiCuMgAl Catalysts Derived from Hydrotalcite-Like Precursors. Catalysis Letters, 2011, 141, 1228-1236.	2.6	45

#	Article	IF	CITATIONS
73	Manganese promoting effects on the Co–Ce–Zr–Ox nano catalysts for methane dry reforming with carbon dioxide to hydrogen and carbon monoxide. Chemical Engineering Journal, 2011, 170, 457-463.	12.7	108
74	Effects of Ce/Zr ratio on the structure and performances of Co-Ce1â^'xZrxO2 catalysts for carbon dioxide reforming of methane. Journal of Natural Gas Chemistry, 2010, 19, 117-122.	1.8	37
75	Catalytic Properties of Ni/CNTs and Ca-Promoted Ni/CNTs for Methanation Reaction of Carbon Dioxide. Advanced Materials Research, 0, 924, 217-226.	0.3	7
76	Rational Design of Zinc/Zeolite Catalyst: Selective Formation of p â€Xylene from Methanol to Aromatics Reaction. Angewandte Chemie, 0, , .	2.0	1