## Maria Isabel Landim Neves

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/660725/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                            | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Impact of thermosonication processing on the phytochemicals, fatty acid composition and volatile<br>organic compounds of almond-based beverage. LWT - Food Science and Technology, 2022, 154, 112579.                              | 5.2  | 9         |
| 2  | Study of the reaction between genipin and amino acids, dairy proteins, and milk to form a blue colorant ingredient. Food Research International, 2022, 157, 111240.                                                                | 6.2  | 10        |
| 3  | Whey Beverage Emulsified System as Carrying Matrix of Fennel Seed Extract Obtained by Supercritical CO2 Extraction: Impact of Thermosonication Processing and Addition of Prebiotic Fibers. Foods, 2022, 11, 1332.                 | 4.3  | 2         |
| 4  | A techno-economic evaluation for the genipin recovery from Genipa americana L. employing<br>non-thermal and thermal high-intensity ultrasound treatments. Separation and Purification<br>Technology, 2021, 258, 117978.            | 7.9  | 11        |
| 5  | Impact of thermosonication pretreatment on the production of plant protein-based natural blue colorants. Journal of Food Engineering, 2021, 299, 110512.                                                                           | 5.2  | 9         |
| 6  | Natural blue food colorants: Consumer acceptance, current alternatives, trends, challenges, and future strategies. Trends in Food Science and Technology, 2021, 112, 163-173.                                                      | 15.1 | 57        |
| 7  | Fructans with different degrees of polymerization and their performance as carrier matrices of spray dried blue colorant. Carbohydrate Polymers, 2021, 270, 118374.                                                                | 10.2 | 8         |
| 8  | Manufacturing natural blue colorant from genipin-crosslinked milk proteins: Does the heat<br>treatment applied to raw milk influence the production of blue compounds?. Future Foods, 2021, 4,<br>100059.                          | 5.4  | 6         |
| 9  | Xylooligosaccharides as an innovative carrier matrix of spray-dried natural blue colorant. Food<br>Hydrocolloids, 2021, 121, 107017.                                                                                               | 10.7 | 10        |
| 10 | Anhydrous milk fat blended with fully hydrogenated soybean oil as lipid microparticles:<br>Characterization, stability, and trends for application. LWT - Food Science and Technology, 2021, 152,<br>112276.                       | 5.2  | 3         |
| 11 | Biorefinery of turmeric ( <i>Curcuma longa</i> L.) using non-thermal and clean emerging technologies: an update on the curcumin recovery step. RSC Advances, 2020, 10, 112-121.                                                    | 3.6  | 24        |
| 12 | Milk colloidal system as a reaction medium and carrier for the natural blue colorant obtained from<br>the cross-linking between genipin and milk proteins. Innovative Food Science and Emerging<br>Technologies, 2020, 61, 102333. | 5.6  | 13        |
| 13 | Physicochemical characteristics of anhydrous milk fat mixed with fully hydrogenated soybean oil.<br>Food Research International, 2020, 132, 109038.                                                                                | 6.2  | 7         |
| 14 | Low-frequency and high-power ultrasound-assisted production of natural blue colorant from the milk and unripe Genipa americana L. Ultrasonics Sonochemistry, 2020, 66, 105068.                                                     | 8.2  | 17        |
| 15 | Encapsulation of curcumin in milk powders by spray-drying: Physicochemistry, rehydration properties,<br>and stability during storage. Powder Technology, 2019, 345, 601-607.                                                       | 4.2  | 48        |
| 16 | Improvement in the functionality of spreads based on milk fat by the addition of low melting triacylglycerols. Food Research International, 2019, 120, 432-440.                                                                    | 6.2  | 19        |
| 17 | Trends and Challenges in the Industrialization of Natural Colorants. Food and Public Health, 2019, 9, 33-44.                                                                                                                       | 2.0  | 21        |