Maria Isabel Landim Neves

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/660725/publications.pdf

Version: 2024-02-01

			1040056	8	888059	
	17	274	9		17	
pa	apers	citations	h-index		g-index	
	17	17	17		252	
	17	17	17		253	
al	l docs	docs citations	times ranked		citing authors	

#	Article	IF	CITATIONS
1	Natural blue food colorants: Consumer acceptance, current alternatives, trends, challenges, and future strategies. Trends in Food Science and Technology, 2021, 112, 163-173.	15.1	57
2	Encapsulation of curcumin in milk powders by spray-drying: Physicochemistry, rehydration properties, and stability during storage. Powder Technology, 2019, 345, 601-607.	4.2	48
3	Biorefinery of turmeric (<i>Curcuma longa</i> L.) using non-thermal and clean emerging technologies: an update on the curcumin recovery step. RSC Advances, 2020, 10, 112-121.	3.6	24
4	Trends and Challenges in the Industrialization of Natural Colorants. Food and Public Health, 2019, 9, 33-44.	2.0	21
5	Improvement in the functionality of spreads based on milk fat by the addition of low melting triacylglycerols. Food Research International, 2019, 120, 432-440.	6.2	19
6	Low-frequency and high-power ultrasound-assisted production of natural blue colorant from the milk and unripe Genipa americana L Ultrasonics Sonochemistry, 2020, 66, 105068.	8.2	17
7	Milk colloidal system as a reaction medium and carrier for the natural blue colorant obtained from the cross-linking between genipin and milk proteins. Innovative Food Science and Emerging Technologies, 2020, 61, 102333.	5.6	13
8	A techno-economic evaluation for the genipin recovery from Genipa americana L. employing non-thermal and thermal high-intensity ultrasound treatments. Separation and Purification Technology, 2021, 258, 117978.	7.9	11
9	Xylooligosaccharides as an innovative carrier matrix of spray-dried natural blue colorant. Food Hydrocolloids, 2021, 121, 107017.	10.7	10
10	Study of the reaction between genipin and amino acids, dairy proteins, and milk to form a blue colorant ingredient. Food Research International, 2022, 157, 111240.	6.2	10
11	Impact of thermosonication pretreatment on the production of plant protein-based natural blue colorants. Journal of Food Engineering, 2021, 299, 110512.	5.2	9
12	Impact of thermosonication processing on the phytochemicals, fatty acid composition and volatile organic compounds of almond-based beverage. LWT - Food Science and Technology, 2022, 154, 112579.	5.2	9
13	Fructans with different degrees of polymerization and their performance as carrier matrices of spray dried blue colorant. Carbohydrate Polymers, 2021, 270, 118374.	10.2	8
14	Physicochemical characteristics of anhydrous milk fat mixed with fully hydrogenated soybean oil. Food Research International, 2020, 132, 109038.	6.2	7
15	Manufacturing natural blue colorant from genipin-crosslinked milk proteins: Does the heat treatment applied to raw milk influence the production of blue compounds?. Future Foods, 2021, 4, 100059.	5. 4	6
16	Anhydrous milk fat blended with fully hydrogenated soybean oil as lipid microparticles: Characterization, stability, and trends for application. LWT - Food Science and Technology, 2021, 152, 112276.	5.2	3
17	Whey Beverage Emulsified System as Carrying Matrix of Fennel Seed Extract Obtained by Supercritical CO2 Extraction: Impact of Thermosonication Processing and Addition of Prebiotic Fibers. Foods, 2022, 11, 1332.	4.3	2