M J I Shohag

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6606326/publications.pdf

Version: 2024-02-01

35	1,230	20	34
papers	citations	h-index	g-index
36	36	36	1709
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Comparative evaluation of in vivo relative bioavailability and in vitro bioaccessibility of arsenic in leafy vegetables and its implication in human exposure assessment. Journal of Hazardous Materials, 2022, 423, 126909.	6.5	29
2	Assessment of Indicators in a Human Liver Cell Line HL-7702 for Tetracycline Toxicity in Farm Soil. Agronomy, 2022, 12, 730.	1.3	O
3	A phytoremediation coupled with agro-production mode suppresses Fusarium wilt disease and alleviates cadmium phytotoxicity of cucumber (Cucumis sativus L.) in continuous cropping greenhouse soil. Chemosphere, 2021, 270, 128634.	4.2	15
4	Formyl tetrahydrofolate deformylase affects hydrogen peroxide accumulation and leaf senescence by regulating the folate status and redox homeostasis in rice. Science China Life Sciences, 2021, 64, 720-738.	2.3	9
5	COVID-19 Crisis: How Can Plant Biotechnology Help?. Plants, 2021, 10, 352.	1.6	12
6	<i>In Vivo–In Vitro</i> Correlations for the Assessment of Cadmium Bioavailability in Vegetables. Journal of Agricultural and Food Chemistry, 2021, 69, 12295-12304.	2.4	10
7	Effect of Different Forms of Selenium on the Physiological Response and the Cadmium Uptake by Rice under Cadmium Stress. International Journal of Environmental Research and Public Health, 2020, 17, 6991.	1.2	21
8	Foliar application of zinc and selenium alleviates cadmium and lead toxicity of water spinach – Bioavailability/cytotoxicity study with human cell lines. Environment International, 2020, 145, 106122.	4.8	29
9	Endophytic inoculation coupled with soil amendment and foliar inhibitor ensure phytoremediation and argo-production in cadmium contaminated soil under oilseed rape-rice rotation system. Science of the Total Environment, 2020, 748, 142481.	3.9	28
10	Genetic and physiological regulation of folate in pak choi (Brassica rapa subsp. Chinensis) germplasm. Journal of Experimental Botany, 2020, 71, 4914-4929.	2.4	8
11	Combined use of arbuscular mycorrhizal fungus and selenium fertilizer shapes microbial community structure and enhances organic selenium accumulation in rice grain. Science of the Total Environment, 2020, 748, 141166.	3.9	43
12	Evaluation of selenium bioavailability to Brassica juncea in representative Chinese soils based on diffusive gradients in thin-films (DGT) and chemical extraction methods. International Journal of Phytoremediation, 2020, 22, 952-962.	1.7	2
13	Screening of 19 <i>Salix</i> clones in effective phytofiltration potentials of manganese, zinc and copper in pilot-scale wetlands. International Journal of Phytoremediation, 2018, 20, 1275-1283.	1.7	2
14	A rapid method for sensitive profiling of folates from plant leaf by ultra-performance liquid chromatography coupled to tandem quadrupole mass spectrometer. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2017, 1040, 169-179.	1.2	18
15	Transcriptome Comparison Reveals the Adaptive Evolution of Two Contrasting Ecotypes of Zn/Cd Hyperaccumulator Sedum alfredii Hance. Frontiers in Plant Science, 2017, 8, 425.	1.7	19
16	Bioaccessibility and Human Exposure Assessment of Cadmium and Arsenic in Pakchoi Genotypes Grown in Co-Contaminated Soils. International Journal of Environmental Research and Public Health, 2017, 14, 977.	1.2	19
17	Enhanced expression of SaHMA3 plays critical roles in Cd hyperaccumulation and hypertolerance in Cd hyperaccumulator Sedum alfredii Hance. Planta, 2016, 243, 577-589.	1.6	81
18	Root cell wall polysaccharides are involved in cadmium hyperaccumulation in Sedum alfredii. Plant and Soil, 2015, 389, 387-399.	1.8	111

#	Article	IF	CITATIONS
19	Sorption of sulphamethoxazole by the biochars derived from rice straw and alligator flag. Environmental Technology (United Kingdom), 2015, 36, 245-253.	1.2	35
20	Iron Translocation in Two Grain Concentration Contrasting Rice (Oryza Satival. Indica) Genotypes. Communications in Soil Science and Plant Analysis, 2015, 46, 2258-2273.	0.6	0
21	Role of sulfur assimilation pathway in cadmium hyperaccumulation by Sedum alfredii Hance. Ecotoxicology and Environmental Safety, 2014, 100, 159-165.	2.9	30
22	Zinc uptake kinetics in the low and high-affinity systems of two contrasting rice genotypes. Journal of Plant Nutrition and Soil Science, 2014, 177, 412-420.	1.1	18
23	Metallothionein 2 (SaMT2) from Sedum alfredii Hance Confers Increased Cd Tolerance and Accumulation in Yeast and Tobacco. PLoS ONE, 2014, 9, e102750.	1.1	73
24	Effect of ferrous sulfate fortification in germinated brown rice on seed iron concentration and bioavailability. Food Chemistry, 2013, 138, 1952-1958.	4.2	42
25	Complexation with dissolved organic matter and mobility control of heavy metals in the rhizosphere of hyperaccumulator Sedum alfredii. Environmental Pollution, 2013, 182, 248-255.	3.7	110
26	Iron concentration, bioavailability, and nutritional quality of polished rice affected by different forms of foliar iron fertilizer. Food Chemistry, 2013, 141, 4122-4126.	4.2	64
27	Effects of Foliar Iron Application on Iron Concentration in Polished Rice Grain and Its Bioavailability. Journal of Agricultural and Food Chemistry, 2012, 60, 11433-11439.	2.4	68
28	Effect of Zinc Sulfate Fortification in Germinated Brown Rice on Seed Zinc Concentration, Bioavailability, and Seed Germination. Journal of Agricultural and Food Chemistry, 2012, 60, 1871-1879.	2.4	43
29	Changes of Folate and Other Potential Health-Promoting Phytochemicals in Legume Seeds As Affected by Germination. Journal of Agricultural and Food Chemistry, 2012, 60, 9137-9143.	2.4	78
30	Folate Content and Composition of Vegetables Commonly Consumed in China. Journal of Food Science, 2012, 77, H239-45.	1.5	18
31	Biofortification and Bioavailability of Rice Grain Zinc as Affected by Different Forms of Foliar Zinc Fertilization. PLoS ONE, 2012, 7, e45428.	1.1	83
32	Natural Variation of Folate Content and Composition in Spinach (Spinacia oleracea) Germplasm. Journal of Agricultural and Food Chemistry, 2011, 59, 12520-12526.	2.4	39
33	Lead tolerance and cellular distribution in Elsholtzia splendens using synchrotron radiation micro-X-ray fluorescence. Journal of Hazardous Materials, 2011, 197, 264-271.	6.5	28
34	Characterization of 68Zn uptake, translocation, and accumulation into developing grains and young leaves of high Zn-density rice genotype. Journal of Zhejiang University: Science B, 2011, 12, 408-418.	1.3	18
35	Recovery of 15N-labeled urea and soil nitrogen dynamics as affected by irrigation management and nitrogen application rate in a double rice cropping system. Plant and Soil, 2011, 343, 195-208.	1.8	26