
Stefan Oprea

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6606056/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	On improving the physical properties of poly (urethane urea)s by the inclusion of aromatic amines connected through long aliphatic chains in the hard domain. European Polymer Journal, 2022, 166, 111035.	5.4	5
2	An insight on the effect of the hard segment domain on the thermoâ€mechanical and surface properties of new piperazineâ€based polyurethanes. Journal of Applied Polymer Science, 2022, 139, .	2.6	2
3	New polyurethanes with specific dielectric behavior through included of 1,3,4-thiadiazole derivative in their structure. European Polymer Journal, 2021, 143, 110177.	5.4	8
4	Behavior to UV irradiation of the polyurethanes containing azobenzene side groups in the main chains structure. Journal of Polymer Research, 2021, 28, 1.	2.4	3
5	Effect of Thermal Aging on the Physico-Chemical and Optical Properties of Poly(ester urethane) Elastomers Designed for Passive Damping (Pads) of the Railway. Polymers, 2021, 13, 192.	4.5	5
6	Physical properties and dielectric behavior of the poly(urethaneâ€urea) based on o â€dianisidine and renewable crossâ€linkers. Journal of Applied Polymer Science, 2021, 138, 50481.	2.6	2
7	Physical properties and the ability to disperse into different polar solvents of the new polyurethane–cellulose composites. Journal of Elastomers and Plastics, 2020, 52, 548-572.	1.5	2
8	Synthesis and characterization of novel poly(urethane-urea) elastomers based on 1,3-propanediol bis(4-aminobenzoate) as chain extender. Materials Today Communications, 2020, 22, 100860.	1.9	2
9	Structure–properties relationship of the polyurethanes that contain Schiff base in the main chain. High Performance Polymers, 2020, 32, 784-792.	1.8	3
10	Synthesis and characterization of novel polyurethane elastomers that include curcumin with various cross-linked structures. Journal of Polymer Research, 2020, 27, 1.	2.4	9
11	Design-properties relationships of polyurethanes elastomers depending on different chain extenders structures. Journal of Polymer Research, 2019, 26, 1.	2.4	25
12	Properties and fungal biodegradation of the different cellulose derivatives structure included into castor oil-based polyurethane composites. Journal of Composite Materials, 2019, 53, 3535-3548.	2.4	4
13	Influence of the hydroquinone ether moieties and Bisphenol A glycerolate diacrylate on the UV stability behavior of new polyurethane materials. Journal of Polymer Research, 2018, 25, 1.	2.4	4
14	Thermomechanical and dielectric properties of novel pyridine-based polyurethane urea elastomers. Journal of Elastomers and Plastics, 2018, 50, 276-292.	1.5	5
15	Biodegradation of pyridineâ€based polyether polyurethanes by the <i>Alternaria tenuissima</i> fungus. Journal of Applied Polymer Science, 2018, 135, 46096.	2.6	27
16	Fungal degradation behavior of two series of polyurethane urea composites obtained by different silver incorporation methods. Journal of Elastomers and Plastics, 2017, 49, 120-131.	1.5	2
17	Comparative evaluation of different methods of inclusion of silver into sulfadiazineâ€based polyurethane urea composites. Polymer Composites, 2017, 38, 2156-2165.	4.6	3
18	The effects of different positions of the pyridine functional groups on the dielectric relaxation of the heterocyclic polyurethane-urea elastomers. Materials Today Communications, 2017, 10, 25-33.	1.9	4

STEFAN OPREA

#	Article	IF	CITATIONS
19	Biodegradation of crosslinked polyurethane acrylates/guar gum composites under natural soil burial conditions. E-Polymers, 2016, 16, 277-286.	3.0	11
20	Synthesis and properties of new crosslinked polyurethane elastomers based on isosorbide. European Polymer Journal, 2016, 83, 161-172.	5.4	47
21	Synthesis, properties, and fungal degradation of castor-oil-based polyurethane composites with different cellulose contents. Cellulose, 2016, 23, 2515-2526.	4.9	29
22	Effects of Introducing Crude and Modified Soybean Oil into Polyurethane Structures on the Soil-Burial Biodegradation Process. Polymer-Plastics Technology and Engineering, 2015, 54, 342-349.	1.9	10
23	Structure – Properties Relationship of Sulfathiazole and Silver Sulfathiazole-Based Polyurethane Elastomers. Polymer-Plastics Technology and Engineering, 2014, 53, 671-677.	1.9	2
24	Effect of the hard segment structure on properties of resorcinol derivatives-based polyurethane elastomers. High Performance Polymers, 2014, 26, 859-866.	1.8	8
25	Synthesis and Characterization of Linear and Cross-Linked Cyclodextrin Polyurethane Elastomers. Polymer-Plastics Technology and Engineering, 2013, 52, 1550-1556.	1.9	10
26	Synthesis, structure and fungal resistance of sulfadiazine-based polyurethane ureas. Polymer Degradation and Stability, 2013, 98, 1481-1488.	5.8	18
27	Effects of guar gum content on structure and properties of multi-crosslinked polyurethane composite films. Composites Part B: Engineering, 2013, 44, 76-83.	12.0	16
28	Properties of crosslinked polyurethanes obtained by acrylic sideâ€group polymerization and of their blends with various plant oils. Journal of Applied Polymer Science, 2013, 129, 3640-3649.	2.6	8
29	Dielectric behavior of polyurethane and polyurethane-urea elastomers with pyridine moieties in the main chain. Journal of Polymer Research, 2013, 20, 1.	2.4	12
30	Synthesis and characterization of novel linear and cross-linked polyurethane urea elastomers with 2,3-diaminopyridine in the main chain. High Performance Polymers, 2013, 25, 147-155.	1.8	10
31	Synthesis and characterization of the cross-linked polyurethane–gum arabic blends obtained by multiacrylates cross-linking polymerization. Journal of Elastomers and Plastics, 2013, 45, 564-576.	1.5	4
32	Effect of pyridazine content and crosslinker structure on the properties of polyurethane elastomers. Journal of Applied Polymer Science, 2013, 128, 3974-3981.	2.6	9
33	Effect of resorcinol-based chain extenders chemical structure on the enhanced properties of polyurethane elastomers. High Performance Polymers, 2012, 24, 389-397.	1.8	3
34	Characterisation of polymer concrete with epoxy polyurethane acryl matrix. Construction and Building Materials, 2012, 37, 190-196.	7.2	86
35	Novel quinoline-based polyurethane elastomers. The effect of the hard segment structure in properties enhancement. Journal of Polymer Research, 2012, 19, 1.	2.4	19
36	Degradation of crosslinked poly(esterâ€urethanes) elastomers in distilled water: Influence of hard segment. Journal of Applied Polymer Science, 2012, 124, 1059-1066.	2.6	19

STEFAN OPREA

#	Article	IF	CITATIONS
37	Synthesis and characterization of photoactive polyurethane elastomers with 2,3-dihydroxypyridine in the main chain. Journal of Materials Science, 2012, 47, 677-684.	3.7	15
38	Effect of the long chain extender on the properties of linear and castor oil cross-linked PEG-based polyurethane elastomers. Journal of Materials Science, 2011, 46, 2251-2258.	3.7	65
39	Molecular dynamics, thermo-mechanical and optical studies on benzidine chain extended polyurethane-urea. Journal of Polymer Research, 2011, 18, 1777-1785.	2.4	11
40	Effect of the hardâ€segment structure on the dielectric relaxation of crosslinked polyurethanes. Journal of Applied Polymer Science, 2011, 119, 2196-2204.	2.6	10
41	Biodegradation of polyurethane acrylate with acrylated epoxidized soybean oil blend elastomers by Chaetomium globosum. International Biodeterioration and Biodegradation, 2011, 65, 533-538.	3.9	35
42	The effect of chain extenders structure on properties of new polyurethane elastomers. Polymer Bulletin, 2010, 65, 753-766.	3.3	45
43	Synthesis and Properties of Polyurethane Elastomers with Castor Oil as Crosslinker. JAOCS, Journal of the American Oil Chemists' Society, 2010, 87, 313-320.	1.9	76
44	Dependence of fungal biodegradation of PEG/castor oil-based polyurethane elastomers on the hard-segment structure. Polymer Degradation and Stability, 2010, 95, 2396-2404.	5.8	63
45	Synthesis of Polyether Urethanes with a Pyrimidine Ring in the Main Chain. Designed Monomers and Polymers, 2010, 13, 523-534.	1.6	9
46	Synthesis and Properties of Polyetherurethane Urea Amide Acrylates. Designed Monomers and Polymers, 2009, 12, 433-444.	1.6	5
47	Effect of Composition and Hard-segment Content on Thermo-mechanical Properties of Cross-linked Polyurethane Copolymers. High Performance Polymers, 2009, 21, 353-370.	1.8	25
48	Synthesis of cross-linked polyurethane elastomers with fluorescein linkages. Journal of Materials Science, 2009, 44, 4181-4187.	3.7	7
49	Synthesis and characterization of polyurethane urea acrylates: Effects of the hard segments structure. Journal of Applied Polymer Science, 2007, 105, 2509-2515.	2.6	23
50	Mechanical behavior during different weathering tests of the polyurethane elastomers films. European Polymer Journal, 2002, 38, 1205-1210.	5.4	40
51	Poly(urethane-methacrylate)s. Synthesis and characterization. Polymer, 2001, 42, 7257-7266.	3.8	35
52	The effects of the inclusion of 1,2,4-triazole derivatives into the main chains of the polyurethane urea exposed to UV radiation. High Performance Polymers, 0, , 095400832110437.	1.8	0