Hai Yan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/660591/publications.pdf

Version: 2024-02-01

44 papers

8,748 citations

279487 23 h-index 39 g-index

44 all docs

44 docs citations

times ranked

44

13819 citing authors

#	Article	IF	CITATIONS
1	The implications of IDH mutations for cancer development and therapy. Nature Reviews Clinical Oncology, 2021, 18, 645-661.	12.5	155
2	Dual role of allele-specific DNA hypermethylation within the TERT promoter in cancer. Journal of Clinical Investigation, $2021,131,.$	3.9	11
3	Genome-Wide CRISPR-Cas9 Screen Reveals Selective Vulnerability of <i>ATRX</i> -Mutant Cancers to WEE1 Inhibition. Cancer Research, 2020, 80, 510-523.	0.4	52
4	Hitting Gliomas When They Are Down: Exploiting IDH-Mutant Metabolic Vulnerabilities. Cancer Discovery, 2020, 10, 1629-1631.	7.7	1
5	The integrated genomic and epigenomic landscape of brainstem glioma. Nature Communications, 2020, 11, 3077.	5.8	50
6	A machine learning-based prediction model of H3K27M mutations in brainstem gliomas using conventional MRI and clinical features. Radiotherapy and Oncology, 2019, 130, 172-179.	0.3	42
7	A PRMT5-RNF168-SMURF2 Axis Controls H2AX Proteostasis. Cell Reports, 2019, 28, 3199-3211.e5.	2.9	27
8	MTAP Loss Promotes Stemness in Glioblastoma and Confers Unique Susceptibility to Purine Starvation. Cancer Research, 2019, 79, 3383-3394.	0.4	30
9	Detection of early-stage hepatocellular carcinoma in asymptomatic HBsAg-seropositive individuals by liquid biopsy. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 6308-6312.	3.3	127
10	ATIM-27. TUMOR MUTATIONAL BURDEN PREDICTS RESPONSE TO ONCOLYTIC POLIO/RHINOVIRUS RECOMBINANT (PVSRIPO) IN MALIGNANT GLIOMA PATIENTS: ASSESSMENT OF TRANSCRIPTIONAL AND IMMUNOLOGICAL CORRELATES. Neuro-Oncology, 2019, 21, vi7-vi7.	0.6	5
11	ATIM-31. SAFETY OF TUMOR-SPECIFIC PEPTIDE VACCINE TARGETING ISOCITRATE DEHYDROGENASE 1 MUTATION IN RECURRENT RESECTABLE LOW GRADE GLIOMA PATIENTS. Neuro-Oncology, 2019, 21, vi8-vi8.	0.6	O
12	IMMU-34. ATRX MUTATIONS PREDICT RESPONSE TO INNATE BASED THERAPY IN GLIOMA. Neuro-Oncology, 2019, 21, vi126-vi126.	0.6	1
13	Hereditary brain tumor with a homozygous germline mutation in PMS2: pedigree analysis and prenatal screening in a family with constitutional mismatch repair deficiency (CMMRD) syndrome. Familial Cancer, 2019, 18, 261-265.	0.9	3
14	Molecular profiling of tumors of the brainstem by sequencing of CSF-derived circulating tumor DNA. Acta Neuropathologica, 2019, 137, 297-306.	3.9	109
15	Sensitive and rapid detection of <i>TERT </i> promoter and <i>IDH </i> mutations in diffuse gliomas. Neuro-Oncology, 2019, 21, 440-450.	0.6	27
16	Synthesis and evaluation of radiolabeled AGI-5198 analogues as candidate radiotracers for imaging mutant IDH1 expression in tumors. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 694-699.	1.0	18
17	Functional requirement of a wild-type allele for mutant IDH1 to suppress anchorage-independent growth through redox homeostasis. Acta Neuropathologica, 2018, 135, 285-298.	3.9	10
18	Synthesis and Evaluation of a ¹⁸ F-Labeled Triazinediamine Analogue for Imaging Mutant IDH1 Expression in Gliomas by PET. ACS Medicinal Chemistry Letters, 2018, 9, 606-611.	1.3	17

#	Article	IF	CITATIONS
19	DNA hypermethylation within TERT promoter upregulates TERT expression in cancer. Journal of Clinical Investigation, 2018, 129, 223-229.	3.9	130
20	GENE-42. THE GENOMIC LANDSCAPE OF TRIPLE-NEGATIVE GLIOBLASTOMA. Neuro-Oncology, 2018, 20, vi112-vi112.	0.6	0
21	TMOD-33. ESTABLISHMENT AND PRELIMINARY EVALUATION OF BEVACIZUMAB-RESISTANT GLIOMA XENOGRAFT MODELS. Neuro-Oncology, 2018, 20, vi275-vi275.	0.6	O
22	GENE-01. THE GENOMIC LANDSCAPE OF TRIPLE-NEGATIVE GLIOBLASTOMA. Neuro-Oncology, 2018, 20, vi102-vi103.	0.6	0
23	The genomic landscape of TERT promoter wildtype-IDH wildtype glioblastoma. Nature Communications, 2018, 9, 2087.	5.8	124
24	Improved grading of IDH-mutated astrocytic gliomas. Nature Reviews Neurology, 2018, 14, 383-384.	4.9	2
25	Identification of recurrent USP48 and BRAF mutations in Cushing's disease. Nature Communications, 2018, 9, 3171.	5.8	106
26	Mutant allele quantification reveals a genetic basis for TP53 mutation-driven castration resistance in prostate cancer cells. Scientific Reports, 2018, 8, 12507.	1.6	5
27	Mutant IDH1 Disrupts the Mouse Subventricular Zone and Alters Brain Tumor Progression. Molecular Cancer Research, 2017, 15, 507-520.	1.5	41
28	Germline Mutations in CDH23, Encoding Cadherin-Related 23, Are Associated with Both Familial and Sporadic Pituitary Adenomas. American Journal of Human Genetics, 2017, 100, 817-823.	2.6	57
29	<i>Cic</i> Loss Promotes Gliomagenesis via Aberrant Neural Stem Cell Proliferation and Differentiation. Cancer Research, 2017, 77, 6097-6108.	0.4	46
30	Patient-derived DIPG cells preserve stem-like characteristics and generate orthotopic tumors. Oncotarget, 2017, 8, 76644-76655.	0.8	27
31	Clonality analysis of multifocal papillary thyroid carcinoma by using genetic profiles. Journal of Pathology, 2016, 239, 72-83.	2.1	56
32	Radiolabeled inhibitors as probes for imaging mutant IDH1 expression in gliomas: Synthesis and preliminary evaluation of labeled butyl-phenyl sulfonamide analogs. European Journal of Medicinal Chemistry, 2016, 119, 218-230.	2.6	13
33	The genome-wide mutational landscape of pituitary adenomas. Cell Research, 2016, 26, 1255-1259.	5.7	137
34	Isocitrate dehydrogenase mutations in gliomas. Neuro-Oncology, 2016, 18, 16-26.	0.6	221
35	The H3.3 K27M mutation results in a poorer prognosis in brainstem gliomas than thalamic gliomas in adults. Human Pathology, 2015, 46, 1626-1632.	1.1	88
36	Recurrent TERT promoter mutations identified in a large-scale study of multiple tumour types are associated with increased TERT expression and telomerase activation. European Journal of Cancer, 2015, 51, 969-976.	1.3	150

#	Article	IF	CITATIONS
37	TERTpromoter mutations contribute toIDHmutations in predicting differential responses to adjuvant therapies in WHO grade II and III diffuse gliomas. Oncotarget, 2015, 6, 24871-24883.	0.8	34
38	Chromatin Accessibility Mapping Identifies Mediators of Basal Transcription and Retinoid-Induced Repression of OTX2 in Medulloblastoma. PLoS ONE, 2014, 9, e107156.	1.1	8
39	Exome sequencing identifies somatic gain-of-function PPM1D mutations in brainstem gliomas. Nature Genetics, 2014, 46, 726-730.	9.4	148
40	<i>TERT</i> promoter mutations occur frequently in gliomas and a subset of tumors derived from cells with low rates of self-renewal. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 6021-6026.	3.3	1,202
41	Mutant Metabolic Enzymes Are at the Origin of Gliomas. Cancer Research, 2009, 69, 9157-9159.	0.4	132
42	<i>IDH1</i> and <i>IDH2</i> Mutations in Gliomas. New England Journal of Medicine, 2009, 360, 765-773.	13.9	5,285
43	Digital karyotyping: a powerful tool for cancer gene discovery. , 2006, , .		1
44	Allelic variations in gene expression. Current Opinion in Oncology, 2004, 16, 39-43.	1.1	50