Muller Fabbri

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6605397/publications.pdf

Version: 2024-02-01

70 papers 22,053 citations

43 h-index 71 g-index

75 all docs

75 docs citations

75 times ranked

25291 citing authors

#	Article	IF	CITATIONS
1	MicroRNA Gene Expression Deregulation in Human Breast Cancer. Cancer Research, 2005, 65, 7065-7070.	0.4	3,719
2	miR-15 and miR-16 induce apoptosis by targeting BCL2. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 13944-13949.	3.3	3,287
3	A MicroRNA Signature Associated with Prognosis and Progression in Chronic Lymphocytic Leukemia. New England Journal of Medicine, 2005, 353, 1793-1801.	13.9	2,255
4	MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 15805-15810.	3.3	1,538
5	MicroRNAs bind to Toll-like receptors to induce prometastatic inflammatory response. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E2110-6.	3.3	1,320
6	MicroRNAs and other non-coding RNAs as targets for anticancer drug development. Nature Reviews Drug Discovery, 2013, 12, 847-865.	21.5	1,234
7	Modulation of miR-155 and miR-125b Levels following Lipopolysaccharide/TNF-α Stimulation and Their Possible Roles in Regulating the Response to Endotoxin Shock. Journal of Immunology, 2007, 179, 5082-5089.	0.4	1,229
8	Noncoding RNA therapeutics â€" challenges and potential solutions. Nature Reviews Drug Discovery, 2021, 20, 629-651.	21.5	749
9	MiR-15a and miR-16-1 cluster functions in human leukemia. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 5166-5171.	3.3	741
10	MicroRNA-29b induces global DNA hypomethylation and tumor suppressor gene reexpression in acute myeloid leukemia by targeting directly DNMT3A and 3B and indirectly DNMT1. Blood, 2009, 113, 6411-6418.	0.6	729
11	MicroRNA expression and function in cancer. Trends in Molecular Medicine, 2006, 12, 580-587.	3.5	699
12	Ultraconserved Regions Encoding ncRNAs Are Altered in Human Leukemias and Carcinomas. Cancer Cell, 2007, 12, 215-229.	7.7	681
13	Exosome-Mediated Transfer of microRNAs Within the Tumor Microenvironment and Neuroblastoma Resistance to Chemotherapy. Journal of the National Cancer Institute, 2015, 107, .	3.0	298
14	Association of a MicroRNA/TP53 Feedback Circuitry With Pathogenesis and Outcome of B-Cell Chronic Lymphocytic Leukemia. JAMA - Journal of the American Medical Association, 2011, 305, 59.	3.8	256
15	Natural Killer–Derived Exosomal miR-186 Inhibits Neuroblastoma Growth and Immune Escape Mechanisms. Cancer Research, 2019, 79, 1151-1164.	0.4	219
16	MicroRNAs. Cancer Journal (Sudbury, Mass), 2008, 14, 1-6.	1.0	171
17	Largeâ€scale isolation and cytotoxicity of extracellular vesicles derived from activated human natural killer cells. Journal of Extracellular Vesicles, 2017, 6, 1294368.	5.5	170
18	Epigenetics and miRNAs in Human Cancer. Advances in Genetics, 2010, 70, 87-99.	0.8	160

#	Article	IF	Citations
19	Regulatory mechanisms of microRNAs involvement in cancer. Expert Opinion on Biological Therapy, 2007, 7, 1009-1019.	1.4	150
20	Emerging roles of microRNAs in cancer. Current Opinion in Genetics and Development, 2018, 48, 128-133.	1.5	130
21	WWOX gene restoration prevents lung cancer growth in vitro and in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 15611-15616.	3.3	128
22	Biological roles and potential applications of immune cellâ€derived extracellular vesicles. Journal of Extracellular Vesicles, 2017, 6, 1400370.	5.5	127
23	A new role for microRNAs, as ligands of Toll-like receptors. RNA Biology, 2013, 10, 169-174.	1.5	125
24	Combining Anti-Mir-155 with Chemotherapy for the Treatment of Lung Cancers. Clinical Cancer Research, 2017, 23, 2891-2904.	3.2	122
25	Extracellular vesicles derived from natural killer cells use multiple cytotoxic proteins and killing mechanisms to target cancer cells. Journal of Extracellular Vesicles, 2019, 8, 1588538.	5.5	122
26	The clinical and biological significance of MIR-224 expression in colorectal cancer metastasis. Gut, 2016, 65, 977-989.	6.1	111
27	Decrypting noncoding RNA interactions, structures, and functional networks. Genome Research, 2019, 29, 1377-1388.	2.4	93
28	Cisplatin induces the release of extracellular vesicles from ovarian cancer cells that can induce invasiveness and drug resistance in bystander cells. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170065.	1.8	90
29	B-cell precursor acute lymphoblastic leukemia and stromal cells communicate through Galectin-3. Oncotarget, 2015, 6, 11378-11394.	0.8	82
30	TLRs as miRNA Receptors. Cancer Research, 2012, 72, 6333-6337.	0.4	80
31	Epigenetic Regulation of miRNAs in Cancer. Advances in Experimental Medicine and Biology, 2013, 754, 137-148.	0.8	79
32	Exosomic microRNAs in the Tumor Microenvironment. Frontiers in Medicine, 2015, 2, 47.	1.2	74
33	Exosomal MicroRNAs in Breast Cancer towards Diagnostic and Therapeutic Applications. Cancers, 2017, 9, 71.	1.7	72
34	Long non-coding RNA containing ultraconserved genomic region 8 promotes bladder cancer tumorigenesis. Oncotarget, 2016, 7, 20636-20654.	0.8	66
35	MicroRNAs in the ontogeny of leukemias and lymphomas. Leukemia and Lymphoma, 2009, 50, 160-170.	0.6	63
36	Mechanisms of Drug Resistance in Cancer: The Role of Extracellular Vesicles. Proteomics, 2017, 17, 1600375.	1.3	60

#	Article	lF	Citations
37	Cancer-associated rs6983267 SNP and its accompanying long noncoding RNA <i>CCAT2 </i> induce myeloid malignancies via unique SNP-specific RNA mutations. Genome Research, 2018, 28, 432-447.	2.4	58
38	Cancer-derived exosomic microRNAs shape the immune system within the tumor microenvironment: State of the art. Seminars in Cell and Developmental Biology, 2017, 67, 23-28.	2.3	55
39	Role of microRNAs in lymphoid biology and disease. Current Opinion in Hematology, 2011, 18, 266-272.	1.2	49
40	Essential role of miRNAs in orchestrating the biology of the tumor microenvironment. Molecular Cancer, 2016, 15, 42.	7.9	49
41	microRNAs in the tumor microenvironment: solving the riddle for a better diagnostics. Expert Review of Molecular Diagnostics, 2014, 14, 565-574.	1.5	47
42	Contribution of neuroblastomaâ€derived exosomes to the production of proâ€tumorigenic signals by bone marrow mesenchymal stromal cells. Journal of Extracellular Vesicles, 2017, 6, 1332941.	5.5	47
43	Cellular and viral microRNAs in sepsis: mechanisms of action and clinical applications. Cell Death and Differentiation, 2016, 23, 1906-1918.	5.0	46
44	MicroRNAs and miRceptors: a new mechanism of action for intercellular communication. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20160486.	1.8	45
45	MicroRNAs in Oncogenesis and Tumor Suppression. International Review of Cell and Molecular Biology, 2017, 333, 229-268.	1.6	44
46	Serum miR-29a Is Upregulated in Acute Graft-versus-Host Disease and Activates Dendritic Cells through TLR Binding. Journal of Immunology, 2017, 198, 2500-2512.	0.4	43
47	MicroRNAs as lung cancer biomarkers and key players in lung carcinogenesis. Clinical Biochemistry, 2013, 46, 918-925.	0.8	42
48	Transcribed ultraconserved region 339 promotes carcinogenesis by modulating tumor suppressor microRNAs. Nature Communications, 2017, 8, 1801.	5.8	36
49	Professional killers: The role of extracellular vesicles in the reciprocal interactions between natural killer, CD8+ cytotoxic Tâ€cells and tumour cells. Journal of Extracellular Vesicles, 2021, 10, e12075.	5.5	33
50	MicroRNAs and genomic variations: from Proteus tricks to Prometheus gift. Carcinogenesis, 2009, 30, 912-917.	1.3	31
51	PRAS40 Connects Microenvironmental Stress Signaling to Exosome-Mediated Secretion. Molecular and Cellular Biology, 2017, 37, .	1.1	30
52	Epigenetic Therapy in Lung Cancer. Frontiers in Oncology, 2013, 3, 135.	1.3	29
53	Combined immune checkpoint blockade increases CD8+CD28+PD-1+ effector T cells and provides a therapeutic strategy for patients with neuroblastoma. Oncolmmunology, 2021, 10, 1838140.	2.1	22
54	MicroRNAs and cancer epigenetics. Current Opinion in Investigational Drugs, 2008, 9, 583-90.	2.3	20

#	Article	IF	CITATIONS
55	Natural Killer Cell–Derived Vesicular miRNAs: A New Anticancer Approach?. Cancer Research, 2020, 80, 17-22.	0.4	16
56	mRNA and miRNA Profiles of Exosomes from Cultured Tumor Cells Reveal Biomarkers Specific for HPV16-Positive and HPV16-Negative Head and Neck Cancer. International Journal of Molecular Sciences, 2020, 21, 8570.	1.8	16
57	Pro-tumoral functions of tumor-associated macrophage EV-miRNA. Seminars in Cancer Biology, 2022, 86, 58-63.	4.3	12
58	Diverse roles of EV-RNA in cancer progression. Seminars in Cancer Biology, 2021, 75, 127-135.	4.3	10
59	Beyond genomics: interpreting the 93% of the human genome that does not encode proteins. Current Opinion in Drug Discovery & Development, 2010, 13, 350-8.	1.9	9
60	MicroRNA-16 Restores Sensitivity to Tyrosine Kinase Inhibitors and Outperforms MEK Inhibitors in KRAS-Mutated Non-Small Cell Lung Cancer. International Journal of Molecular Sciences, 2021, 22, 13357.	1.8	6
61	Perspective: Cancer Patient Management Challenges During the COVID-19 Pandemic. Frontiers in Oncology, 2020, 10, 1556.	1.3	4
62	Overexpression of ultraconserved region 83- induces lung cancer tumorigenesis. PLoS ONE, 2022, 17, e0261464.	1.1	4
63	Acute lymphoblastic leukemia-secreted miRNAs induce a proinflammatory microenvironment and promote the activation of hematopoietic progenitors. Journal of Leukocyte Biology, 2022, 112, 31-45.	1.5	4
64	The miRNA Profile of Inflammatory Colorectal Tumors Identify TGF- \hat{l}^2 as a Companion Target for Checkpoint Blockade Immunotherapy. Frontiers in Cell and Developmental Biology, 2021, 9, 754507.	1.8	3
65	High-Throughput Profiling in the Hematopoietic System. Methods in Molecular Biology, 2010, 667, 79-91.	0.4	2
66	Not all good things come in big packages. Clinical Chemistry and Laboratory Medicine, 2017, 55, 605-607.	1.4	2
67	Use of miRNA expression profiling to identify novel biomarkers. Personalized Medicine, 2007, 4, 147-155.	0.8	1
68	Non-Coding RNAs in Cancer — The Other Part of the Story. Modecular Medicine and Medicinal, 2010, , 265-277.	0.4	0
69	Role of MicroRNAs in Cancer Epigenetics. , 2013, , 13-31.		0
70	A Novel CD49d Targeting Antisense, ATL1102, Effectively Mobilizes Acute Myeloid Leukemia Cells. Blood, 2015, 126, 3807-3807.	0.6	0