
Chunfu Zheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6605236/publications.pdf Version: 2024-02-01

CHUNEL THENC

#	Article	IF	CITATIONS
1	SARSâ€CoVâ€2 and dengue virus coâ€infection: Epidemiology, pathogenesis, diagnosis, treatment, and management. Reviews in Medical Virology, 2023, 33, e2340.	8.3	15
2	Revisiting IRF1-mediated antiviral innate immunity. Cytokine and Growth Factor Reviews, 2022, 64, 1-6.	7.2	25
3	The emerging roles of the CDK/cyclin complexes in antiviral innate immunity. Journal of Medical Virology, 2022, 94, 2384-2387.	5.0	9
4	Omicron variant of SARSâ€CoVâ€2: Genomics, transmissibility, and responses to current COVIDâ€19 vaccines. Journal of Medical Virology, 2022, 94, 1825-1832.	5.0	570
5	Roles of the polybasic furin cleavage site of spike protein in SARSâ€CoVâ€2 replication, pathogenesis, and host immune responses and vaccination. Journal of Medical Virology, 2022, 94, 1815-1820.	5.0	36
6	Novel Molecular Therapeutics Targeting Signaling Pathway to Control Hepatitis B Viral Infection. Frontiers in Cellular and Infection Microbiology, 2022, 12, 847539.	3.9	7
7	When Poly(A) Binding Proteins Meet Viral Infections, Including SARS-CoV-2. Journal of Virology, 2022, 96, e0013622.	3.4	7
8	When RING finger family proteins meet SARS oVâ€2. Journal of Medical Virology, 2022, 94, 2977-2985.	5.0	8
9	When cyclinâ€dependent kinases meet viral infections, including SARS oVâ€2. Journal of Medical Virology, 2022, 94, 2962-2968.	5.0	8
10	DExD/H-box helicases: multifunctional regulators in antiviral innate immunity. Cellular and Molecular Life Sciences, 2022, 79, 2.	5.4	30
11	Natural infections of SARS oVâ€2 increased in animals: How should humans interactÂwith animals?. Journal of Medical Virology, 2022, 94, 3503-3505.	5.0	4
12	UNC93B1 attenuates the cGAS–STING signaling pathway by targeting STING for autophagy–lysosome degradation. Journal of Medical Virology, 2022, 94, 4490-4501.	5.0	16
13	Unignorable public health risk of avian influenza virus during COVIDâ€19 pandemic. Journal of Medical Virology, 2022, 94, 4058-4060.	5.0	2
14	Puerarin: A Potential Therapeutic for SARS-CoV-2 and Hantavirus Co-Infection. Frontiers in Immunology, 2022, 13, .	4.8	2
15	Immunoinformatic Design of a Multivalent Peptide Vaccine Against Mucormycosis: Targeting FTR1 Protein of Major Causative Fungi. Frontiers in Immunology, 2022, 13, .	4.8	16
16	The Deltacron conundrum: Its origin and potential health risks. Journal of Medical Virology, 2022, 94, 5096-5102.	5.0	15
17	Zinc finger proteins in the host-virus interplay: multifaceted functions based on their nucleic acid-binding property. FEMS Microbiology Reviews, 2021, 45, .	8.6	20
18	The emerging roles of ZDHHCs-mediated protein palmitoylation in the antiviral innate immune responses. Critical Reviews in Microbiology, 2021, 47, 34-43.	6.1	11

#	Article	IF	CITATIONS
19	The emerging roles of the MARCH ligases in antiviral innate immunity. International Journal of Biological Macromolecules, 2021, 171, 423-427.	7.5	13
20	The emerging roles of NOD-like receptors in antiviral innate immune signaling pathways. International Journal of Biological Macromolecules, 2021, 169, 407-413.	7.5	40
21	When human guanylate-binding proteins meet viral infections. Journal of Biomedical Science, 2021, 28, 17.	7.0	17
22	The crosstalk between DNA damage response components and DNA-sensing innate immune signaling pathways. International Reviews of Immunology, 2021, , 1-9.	3.3	1
23	When MARCH family proteins meet viral infections. Virology Journal, 2021, 18, 49.	3.4	11
24	When Rab GTPases meet innate immune signaling pathways. Cytokine and Growth Factor Reviews, 2021, 59, 95-100.	7.2	14
25	The Critical Role of PARPs in Regulating Innate Immune Responses. Frontiers in Immunology, 2021, 12, 712556.	4.8	19
26	Editorial: Sensing DNA in Antiviral Innate Immunity. Frontiers in Immunology, 2021, 12, 644310.	4.8	6
27	When PARPs Meet Antiviral Innate Immunity. Trends in Microbiology, 2021, 29, 776-778.	7.7	23
28	The crosstalk between the caspase family and the cGAS‒STING signaling pathway. Journal of Molecular Cell Biology, 2021, 13, 739-747.	3.3	17
29	The crosstalk between pattern-recognition receptor signaling and calcium signaling. International Journal of Biological Macromolecules, 2021, 192, 745-756.	7.5	32
30	The crosstalk between viral RNA- and DNA-sensing mechanisms. Cellular and Molecular Life Sciences, 2021, 78, 7427-7434.	5.4	28
31	Insights Into the Coinfections of Human Immunodeficiency Virus-Hepatitis B Virus, Human Immunodeficiency Virus-Hepatitis C Virus, and Hepatitis B Virus-Hepatitis C Virus: Prevalence, Risk Factors, Pathogenesis, Diagnosis, and Treatment. Frontiers in Microbiology, 2021, 12, 780887.	3.5	14
32	Using the CRISPR-Cas System to Solve Porcine Viral Infection-related Issues CRISPR Journal, 2021, 4, 776-788.	2.9	1
33	Bortezomib induces HSV-1 lethality in mice with neutrophil deficiency. Journal of Leukocyte Biology, 2020, 107, 105-112.	3.3	1
34	β-Catenin Is Required for the cGAS/STING Signaling Pathway but Antagonized by the Herpes Simplex Virus 1 US3 Protein. Journal of Virology, 2020, 94, .	3.4	31
35	The Race between Host Antiviral Innate Immunity and the Immune Evasion Strategies of Herpes Simplex Virus 1. Microbiology and Molecular Biology Reviews, 2020, 84, .	6.6	93
36	Protein Dynamics in Cytosolic DNA-Sensing Antiviral Innate Immune Signaling Pathways. Frontiers in Immunology, 2020, 11, 1255.	4.8	6

#	Article	IF	CITATIONS
37	Herpes Simplex Virus 1 Tegument Protein UL46 Inhibits TANK-Binding Kinase 1-Mediated Signaling. MBio, 2019, 10, .	4.1	50
38	A Tug of War: DNA-Sensing Antiviral Innate Immunity and Herpes Simplex Virus Type I Infection. Frontiers in Microbiology, 2019, 10, 2627.	3.5	35
39	Evasion of Cytosolic DNA-Stimulated Innate Immune Responses by Herpes Simplex Virus 1. Journal of Virology, 2018, 92, .	3.4	64
40	Herpes Simplex Virus 1 Tegument Protein VP22 Abrogates cGAS/STING-Mediated Antiviral Innate Immunity. Journal of Virology, 2018, 92, .	3.4	134
41	Herpes Simplex Virus 1 UL36USP Antagonizes Type I Interferon-Mediated Antiviral Innate Immunity. Journal of Virology, 2018, 92, .	3.4	42
42	Herpes Simplex Virus 1 UL24 Abrogates the DNA Sensing Signal Pathway by Inhibiting NF-κB Activation. Journal of Virology, 2017, 91, .	3.4	95
43	Herpes Simplex Virus 1 Abrogates the cGAS/STING-Mediated Cytosolic DNA-Sensing Pathway via Its Virion Host Shutoff Protein, UL41. Journal of Virology, 2017, 91, .	3.4	136
44	Herpes simplex virus type 1 abrogates the antiviral activity of Ch25h via its virion host shutoff protein. Antiviral Research, 2017, 143, 69-73.	4.1	23
45	Herpes simplex virus 1 infection dampens the immediate early antiviral innate immunity signaling from peroxisomes by tegument protein VP16. Virology Journal, 2017, 14, 35.	3.4	33
46	Antiviral activity of PHA767491 against human herpes simplex virus in vitro and in vivo. BMC Infectious Diseases, 2017, 17, 217.	2.9	16
47	The herpes simplex virus 1 UL36USP deubiquitinase suppresses DNA repair in host cells via deubiquitination of proliferating cell nuclear antigen. Journal of Biological Chemistry, 2017, 292, 8472-8483.	3.4	23
48	Herpes Simplex Virus 1 Ubiquitin-Specific Protease UL36 Abrogates NF-κB Activation in DNA Sensing Signal Pathway. Journal of Virology, 2017, 91, .	3.4	100
49	Herpes Simplex Virus 1 UL41 Protein Suppresses the IRE1/XBP1 Signal Pathway of the Unfolded Protein Response via Its RNase Activity. Journal of Virology, 2017, 91, .	3.4	36
50	CTCF interacts with the lytic HSV-1 genome to promote viral transcription. Scientific Reports, 2017, 7, 39861.	3.3	38
51	Herpes Simplex Virus 1 Serine Protease VP24 Blocks the DNA-Sensing Signal Pathway by Abrogating Activation of Interferon Regulatory Factor 3. Journal of Virology, 2016, 90, 5824-5829.	3.4	99
52	Herpes Simplex Virus 1 Tegument Protein UL41 Counteracts IFIT3 Antiviral Innate Immunity. Journal of Virology, 2016, 90, 11056-11061.	3.4	37
53	RIC-I-Mediated STING Upregulation Restricts Herpes Simplex Virus 1 Infection. Journal of Virology, 2016, 90, 9406-9419.	3.4	69
54	Evasion of host antiviral innate immunity by HSV-1, an update. Virology Journal, 2016, 13, 38.	3.4	131

#	Article	IF	CITATIONS
55	Herpes Simplex Virus 1 (HSV-1) and HSV-2 Mediate Species-Specific Modulations of Programmed Necrosis through the Viral Ribonucleotide Reductase Large Subunit R1. Journal of Virology, 2016, 90, 1088-1095.	3.4	35
56	Herpes simplex virus 1 UL41 protein abrogates the antiviral activity of hZAP by degrading its mRNA. Virology Journal, 2015, 12, 203.	3.4	49
57	RIP1/RIP3 Binding to HSV-1 ICP6 Initiates Necroptosis to Restrict Virus Propagation in Mice. Cell Host and Microbe, 2015, 17, 229-242.	11.0	225
58	Contribution of N-linked glycans on HSV-2 gB to cell–cell fusion and viral entry. Virology, 2015, 483, 72-82.	2.4	33
59	Conservation of the STING-Mediated Cytosolic DNA Sensing Pathway in Zebrafish. Journal of Virology, 2015, 89, 7696-7706.	3.4	69
60	Zinc finger antiviral protein inhibits coxsackievirus B3 virus replication and protects against viral myocarditis. Antiviral Research, 2015, 123, 50-61.	4.1	41
61	PILRα and PILRβ have a siglec fold and provide the basis of binding to sialic acid. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 8221-8226.	7.1	25
62	Herpes Simplex Virus 1 Counteracts Viperin via Its Virion Host Shutoff Protein UL41. Journal of Virology, 2014, 88, 12163-12166.	3.4	73
63	Herpes Simplex Virus 1 Protein Kinase US3 Hyperphosphorylates p65/RelA and Dampens NF-κB Activation. Journal of Virology, 2014, 88, 7941-7951.	3.4	88
64	Crystal Structure of Herpes Simplex Virus 2 gD Bound to Nectin-1 Reveals a Conserved Mode of Receptor Recognition. Journal of Virology, 2014, 88, 13678-13688.	3.4	38
65	Herpes Simplex Virus 1 E3 Ubiquitin Ligase ICPO Protein Inhibits Tumor Necrosis Factor Alpha-Induced NF-I®B Activation by Interacting with p65/ReIA and p50/NF-I®B1. Journal of Virology, 2013, 87, 12935-12948.	3.4	98
66	Herpes simplex virus 1 DNA polymerase processivity factor UL42 inhibits TNF-α-induced NF-κB activation by interacting with p65/RelA and p50/NF-κB1. Medical Microbiology and Immunology, 2013, 202, 313-325.	4.8	69
67	Herpes Simplex Virus 1-Encoded Tegument Protein VP16 Abrogates the Production of Beta Interferon (IFN) by Inhibiting NF-κB Activation and Blocking IFN Regulatory Factor 3 To Recruit Its Coactivator CBP. Journal of Virology, 2013, 87, 9788-9801.	3.4	128
68	Herpes Simplex Virus 1 Ubiquitin-Specific Protease UL36 Inhibits Beta Interferon Production by Deubiquitinating TRAF3. Journal of Virology, 2013, 87, 11851-11860.	3.4	128
69	Herpes Simplex Virus 1 Serine/Threonine Kinase US3 Hyperphosphorylates IRF3 and Inhibits Beta Interferon Production. Journal of Virology, 2013, 87, 12814-12827.	3.4	126
70	The Herpes Simplex Virus 1-Encoded Envelope Glycoprotein B Activates NF-κB through the Toll-Like Receptor 2 and MyD88/TRAF6-Dependent Signaling Pathway. PLoS ONE, 2013, 8, e54586.	2.5	92
71	Interspecies Heterokaryon Assay to Characterize the Nucleocytoplasmic Shuttling of Herpesviral Proteins. Methods in Molecular Biology, 2013, 1064, 131-140.	0.9	2
72	The nucleolus and herpesviral usurpation. Journal of Medical Microbiology, 2012, 61, 1637-1643.	1.8	10

#	Article	IF	CITATIONS
73	Herpes Simplex Virus 1 Tegument Protein US11 Downmodulates the RLR Signaling Pathway via Direct Interaction with RIG-I and MDA-5. Journal of Virology, 2012, 86, 3528-3540.	3.4	148
74	Identification of a novel NLS of herpes simplex virus type 1 (HSV-1) VP19C and its nuclear localization is required for efficient production of HSV-1. Journal of General Virology, 2012, 93, 1869-1875.	2.9	20
75	Herpesviral infection and Toll-like receptor 2. Protein and Cell, 2012, 3, 590-601.	11.0	18
76	The potential link between PML NBs and ICPO in regulating lytic and latent infection of HSV-1. Protein and Cell, 2012, 3, 372-382.	11.0	20
77	A PY-nuclear localization signal is required for nuclear accumulation of HCMV UL79 protein. Medical Microbiology and Immunology, 2012, 201, 381-387.	4.8	18
78	Live cell imaging fails to support viral-protein-mediated intercellular trafficking. Archives of Virology, 2012, 157, 1383-1386.	2.1	1
79	Characterization of nuclear import and export signals determining the subcellular localization of WD repeatâ€containing protein 42A (WDR42A). FEBS Letters, 2012, 586, 1079-1085.	2.8	7
80	Probing of the nuclear import and export signals and subcellular transport mechanism of varicella-zoster virus tegument protein open reading frame 10. Medical Microbiology and Immunology, 2012, 201, 103-111.	4.8	7
81	The First Identified Nucleocytoplasmic Shuttling Herpesviral Capsid Protein: Herpes Simplex Virus Type 1 VP19C. PLoS ONE, 2012, 7, e41825.	2.5	9
82	A novel virus-encoded nucleocytoplasmic shuttling protein: The UL3 protein of herpes simplex virus type 1. Journal of Virological Methods, 2011, 177, 206-210.	2.1	7
83	Characterization of molecular determinants for nucleocytoplasmic shuttling of PRV UL54. Virology, 2011, 417, 385-393.	2.4	30
84	Characterization of the subcellular localization of herpes simplex virus type 1 proteins in living cells. Medical Microbiology and Immunology, 2011, 200, 61-68.	4.8	37
85	Screening and identification of host factors interacting with UL14 of herpes simplex virus 1. Medical Microbiology and Immunology, 2011, 200, 203-208.	4.8	5
86	Host cell targets of tegument protein VP22 of herpes simplex virus 1. Archives of Virology, 2011, 156, 1079-1084.	2.1	6
87	Cloning of the herpes simplex virus type 1 genome as a novel luciferase-tagged infectious bacterial artificial chromosome. Archives of Virology, 2011, 156, 2267-2272.	2.1	43
88	Molecular determinants responsible for the subcellular localization of HSV-1 UL4 protein. Virologica Sinica, 2011, 26, 347-356.	3.0	5
89	Cloning of the Herpes smplex virus Type 1 genome as an novel luciferase infectious bacterial artificial chromosome. BMC Proceedings, 2011, 5, .	1.6	0
90	Screening and identification of host cellular factors interaction with immediate-early protein ICP22 of herpes simplex virus type 1. BMC Proceedings, 2011, 5, .	1.6	0

#	Article	IF	CITATIONS
91	Molecular characterization of subcellular localization and nucleocytoplasmic shuttling of PRV UL54. BMC Proceedings, 2011, 5, .	1.6	1
92	mechanistic Characterization of the nuclear import and export signals of VZV ORF9. BMC Proceedings, 2011, 5, .	1.6	0
93	Varicella zoster virus immediate early protein 61 blocks the IFN-β pathway by degradation the activited IRF3. BMC Proceedings, 2011, 5, .	1.6	1
94	Varicella-Zoster Virus Immediate-Early Protein ORF61 Abrogates the IRF3-Mediated Innate Immune Response through Degradation of Activated IRF3. Journal of Virology, 2011, 85, 11079-11089.	3.4	110
95	Comprehensive Characterization of Interaction Complexes of Herpes Simplex Virus Type 1 ICP22, UL3, UL4, and UL20.5. Journal of Virology, 2011, 85, 1881-1886.	3.4	53
96	Characterization of the nuclear import and export signals, and subcellular transport mechanism of varicella-zoster virus ORF9. Journal of General Virology, 2011, 92, 621-626.	2.9	18
97	Identification of Nuclear and Nucleolar Localization Signals of Pseudorabies Virus (PRV) Early Protein UL54 Reveals that Its Nuclear Targeting Is Required for Efficient Production of PRV. Journal of Virology, 2011, 85, 10239-10251.	3.4	30
98	The herpes simplex virus type 1 infected cell protein 22. Virologica Sinica, 2010, 25, 1-7.	3.0	8
99	The nucleolus and viral infection. Virologica Sinica, 2010, 25, 151-157.	3.0	20
100	Herpes simplex virus type 1 ICP27 protein: Its expression, purification and specific antiserum production. Virologica Sinica, 2010, 25, 199-205.	3.0	4
101	Expression, purification of herpes simplex virus type 1 UL4 protein, and production and characterization of UL4 polyclonal antibody. Journal of Virological Methods, 2010, 163, 465-469.	2.1	10
102	Expression, purification of the UL3 protein of herpes simplex virus type 1, and production of UL3 polyclonal antibody. Journal of Virological Methods, 2010, 166, 72-76.	2.1	8
103	Intracellular trafficking of VP22 in bovine herpesvirus-1 infected cells. Virology, 2010, 396, 189-202.	2.4	7
104	Recombinant N-terminal part of Bovine herpesviru 1 ICP27 protein: its preparation, purification, and use for raising specific antiserum. Acta Virologica, 2010, 54, 147-150.	0.8	2
105	Granulysin Production and Anticryptococcal Activity Is Dependent upon a Far Upstream Enhancer That Binds STAT5 in Human Peripheral Blood CD4+T Cells. Journal of Immunology, 2010, 185, 5074-5081.	0.8	8
106	Characterization of the nuclear import and export mechanisms of bovine herpesvirus-1 infected cell protein 27. Virus Research, 2010, 149, 95-103.	2.2	16
107	Molecular anatomy of subcellular localization of HSV-1 tegument protein US11 in living cells. Virus Research, 2010, 153, 71-81.	2.2	29
108	Real-time imaging of trapping and urease-dependent transmigration of Cryptococcus neoformans in mouse brain. Journal of Clinical Investigation, 2010, 120, 1683-1693.	8.2	179

#	Article	IF	CITATIONS
109	<i>Cryptococcus neoformans</i> Directly Stimulates Perforin Production and Rearms NK Cells for Enhanced Anticryptococcal Microbicidal Activity. Infection and Immunity, 2009, 77, 2436-2446.	2.2	47
110	A multiple functional protein: the herpes simplex virus type 1 tegument protein VP22. Virologica Sinica, 2009, 24, 153-161.	3.0	4
111	Characterization of the nuclear and nucleolar localization signals of bovine herpesvirus-1 infected cell protein 27. Virus Research, 2009, 145, 312-320.	2.2	28
112	The herpes simplex virus type 1 multiple function protein ICP27. Virologica Sinica, 2008, 23, 399-405.	3.0	1
113	Late Expression of Granulysin by Microbicidal CD4+ T Cells Requires PI3K- and STAT5-Dependent Expression of IL-2Rβ That Is Defective in HIV-Infected Patients. Journal of Immunology, 2008, 180, 7221-7229.	0.8	25
114	Cytotoxic CD4+ T cells use granulysin to kill Cryptococcus neoformans, and activation of this pathway is defective in HIV patients. Blood, 2007, 109, 2049-2057.	1.4	79
115	Effect of different nuclear localization sequences on the immune responses induced by a MIDGE vector encoding bovine herpesvirus-1 glycoprotein D. Vaccine, 2006, 24, 4625-4629.	3.8	25
116	Intercellular trafficking of the major tegument protein VP22 of bovine herpesvirus-1 and its application to improve a DNA vaccine. Archives of Virology, 2006, 151, 985-993.	2.1	16
117	Bovine Herpesvirus 1 VP22 Enhances the Efficacy of a DNA Vaccine in Cattle. Journal of Virology, 2005, 79, 1948-1953.	3.4	23
118	Characterization of the Nuclear Localization and Nuclear Export Signals of Bovine Herpesvirus 1 VP22. Journal of Virology, 2005, 79, 11864-11872.	3.4	26
119	Immunization with plasmid DNA encoding a truncated, secreted form of the bovine viral diarrhea virus E2 protein elicits strong humoral and cellular immune responses. Vaccine, 2005, 23, 5252-5262.	3.8	39
120	Characterization of nuclear localization and export signals of the major tegument protein VP8 of bovine herpesvirus-1. Virology, 2004, 324, 327-339.	2.4	35
121	Molecular Cloning and Sequencing of the Merozoite Surface Antigen 2 Gene from Plasmodium falciparum Strain FCC-I/HN and Expression of the Gene in Mycobacteria1. Journal of Eukaryotic Microbiology, 2003, 50, 140-143.	1.7	1
122	Recombinant Mycobacterium bovis BCG producing the circumsporozoite protein of Plasmodium falciparum FCC-1/HN strain induces strong immune responses in BALB/c mice. Parasitology International, 2002, 51, 1-7.	1.3	14
123	Immune response induced by recombinant BCG expressing merozoite surface antigen 2 from Plasmodium falciparum. Vaccine, 2001, 20, 914-919.	3.8	9
124	Molecular Cloning and Sequencing of the Circumsporozoite Protein Gene from Plasmodium falciparum Strain FCC-1/HN and Expression of the Gene in Mycobacteria. Journal of Clinical Microbiology, 2001, 39, 2911-2915.	3.9	3
125	Immunoassay and mass cytometry revealed immunological profiles induced by inactivated BBIBP COVIDâ€19 vaccine. Journal of Medical Virology, 0, , .	5.0	4