
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6605191/publications.pdf Version: 2024-02-01

HAN MIN WOO

#	Article	IF	CITATIONS
1	<i>In Silico</i> Identification of Gene Amplification Targets for Improvement of Lycopene Production. Applied and Environmental Microbiology, 2010, 76, 3097-3105.	1.4	247
2	Mass spectrometry based metabolomic approaches in urinary biomarker study of women's cancers. Clinica Chimica Acta, 2009, 400, 63-69.	0.5	166
3	Electricity-driven metabolic shift through direct electron uptake by electroactive heterotroph Clostridiumpasteurianum. Scientific Reports, 2014, 4, 6961.	1.6	165
4	Ethanol production from lignocellulosic hydrolysates using engineered Saccharomyces cerevisiae harboring xylose isomerase-based pathway. Bioresource Technology, 2016, 209, 290-296.	4.8	91
5	A dye-decolorizing peroxidase from Bacillus subtilis exhibiting substrate-dependent optimum temperature for dyes and β-ether lignin dimer. Scientific Reports, 2015, 5, 8245.	1.6	90
6	High production of 2,3-butanediol from biodiesel-derived crude glycerol by metabolically engineered Klebsiella oxytoca M1. Biotechnology for Biofuels, 2015, 8, 146.	6.2	81
7	Autonomous control of metabolic state by a quorum sensing (QS)-mediated regulator for bisabolene production in engineered E. coli. Metabolic Engineering, 2017, 44, 325-336.	3.6	78
8	Photosynthetic conversion of CO2 to farnesyl diphosphate-derived phytochemicals (amorpha-4,11-diene and squalene) by engineered cyanobacteria. Biotechnology for Biofuels, 2016, 9, 202.	6.2	75
9	Solar-to-chemical and solar-to-fuel production from CO 2 by metabolically engineered microorganisms. Current Opinion in Biotechnology, 2017, 45, 1-7.	3.3	71
10	Biosynthesis of pinene from glucose using metabolically-engineered Corynebacterium glutamicum. Biotechnology Letters, 2014, 36, 2069-2077.	1,1	70
11	Metabolomic Approach To Evaluate the Toxicological Effects of Nonylphenol with Rat Urine. Analytical Chemistry, 2007, 79, 6102-6110.	3.2	67
12	Microbial Synthesis of Myrcene by Metabolically Engineered <i>Escherichia coli</i> . Journal of Agricultural and Food Chemistry, 2015, 63, 4606-4612.	2.4	67
13	Synergistic effect of multiple stress conditions for improving microalgal lipid production. Algal Research, 2016, 19, 215-224.	2.4	65
14	Electrochemical detoxification of phenolic compounds in lignocellulosic hydrolysate for Clostridium fermentation. Bioresource Technology, 2015, 187, 228-234.	4.8	62
15	Engineering of a modular and synthetic phosphoketolase pathway for photosynthetic production of acetone from <scp>CO</scp> ₂ in <i><scp>S</scp>ynechococcus elongatus </i> <scp>PCC</scp> 7942 under light and aerobic condition. Plant Biotechnology Journal, 2016, 14, 1768-1776.	4.1	62
16	Synthetic biology platform of CoryneBrick vectors for gene expression in Corynebacterium glutamicum and its application to xylose utilization. Applied Microbiology and Biotechnology, 2014, 98, 5991-6002.	1.7	58
17	Enhanced 2,3-Butanediol Production by Optimizing Fermentation Conditions and Engineering Klebsiella oxytoca M1 through Overexpression of Acetoin Reductase. PLoS ONE, 2015, 10, e0138109.	1.1	56
18	Improvement of Squalene Production from CO ₂ in <i>Synechococcus elongatus</i> PCC 7942 by Metabolic Engineering and Scalable Production in a Photobioreactor. ACS Synthetic Biology, 2017, 6, 1289-1295.	1.9	53

#	Article	IF	CITATIONS
19	Development of SyneBrick Vectors As a Synthetic Biology Platform for Gene Expression in Synechococcus elongatus PCC 7942. Frontiers in Plant Science, 2017, 8, 293.	1.7	53
20	RNA-guided single/double gene repressions in Corynebacterium glutamicum using an efficient CRISPR interference and its application to industrial strain. Microbial Cell Factories, 2018, 17, 4.	1.9	52
21	Modular pathway engineering of Corynebacterium glutamicum to improve xylose utilization and succinate production. Journal of Biotechnology, 2017, 258, 69-78.	1.9	50
22	Recent progress in development of synthetic biology platforms and metabolic engineering of Corynebacterium glutamicum. Journal of Biotechnology, 2014, 180, 43-51.	1.9	49
23	Direct Conversion of CO ₂ to α-Farnesene Using Metabolically Engineered <i>Synechococcus elongatus</i> PCC 7942. Journal of Agricultural and Food Chemistry, 2017, 65, 10424-10428.	2.4	49
24	Construction of Synthetic Promoter-Based Expression Cassettes for the Production of Cadaverine in Recombinant Corynebacterium glutamicum. Applied Biochemistry and Biotechnology, 2015, 176, 2065-2075.	1.4	47
25	CRISPRi-dCas12a: A dCas12a-Mediated CRISPR Interference for Repression of Multiple Genes and Metabolic Engineering in Cyanobacteria. ACS Synthetic Biology, 2020, 9, 2351-2361.	1.9	46
26	Efficient lipid extraction from the oleaginous yeast Yarrowia lipolytica using switchable solvents. Renewable Energy, 2019, 132, 61-67.	4.3	41
27	Succinate production from CO2-grown microalgal biomass as carbon source using engineered Corynebacterium glutamicum through consolidated bioprocessing. Scientific Reports, 2014, 4, 5819.	1.6	40
28	Improvement in modular scalability of polymeric thin-film photobioreactor for autotrophic culturing of Haematococcus pluvialis using industrial flue gas. Bioresource Technology, 2018, 249, 519-526.	4.8	38
29	Photosynthetic CO ₂ Conversion to Fatty Acid Ethyl Esters (FAEEs) Using Engineered Cyanobacteria. Journal of Agricultural and Food Chemistry, 2017, 65, 1087-1092.	2.4	36
30	Improved CO2-derived polyhydroxybutyrate (PHB) production by engineering fast-growing cyanobacterium Synechococcus elongatus UTEX 2973 for potential utilization of flue gas. Bioresource Technology, 2021, 327, 124789.	4.8	36
31	Adaptive evolution and metabolic engineering of a cellobiose- and xylose- negative Corynebacterium glutamicum that co-utilizes cellobiose and xylose. Microbial Cell Factories, 2016, 15, 20.	1.9	34
32	Systems-level analysis of genome-scalein silico metabolic models using MetaFluxNet. Biotechnology and Bioprocess Engineering, 2005, 10, 425-431.	1.4	33
33	Link between Phosphate Starvation and Glycogen Metabolism in <i>Corynebacterium glutamicum</i> , Revealed by Metabolomics. Applied and Environmental Microbiology, 2010, 76, 6910-6919.	1.4	33
34	Fractionation of Lignocellulosic Biomass over Core–Shell Ni@Al ₂ O ₃ Catalysts with Formic Acid as a Cocatalyst and Hydrogen Source. ChemSusChem, 2019, 12, 1743-1762.	3.6	33
35	CRISPR interference–mediated metabolic engineering of <i>Corynebacterium glutamicum</i> for homoâ€butyrate production. Biotechnology and Bioengineering, 2018, 115, 2067-2074.	1.7	32
36	Overexpression of the Key Enzymes in the Methylerythritol 4-phosphate Pathway in <i>Corynebacterium glutamicum</i> for Improving Farnesyl Diphosphate-Derived Terpene Production. Journal of Agricultural and Food Chemistry, 2020, 68, 10780-10786.	2.4	32

#	Article	IF	CITATIONS
37	Heterologous Production of Squalene from Glucose in Engineered <i>Corynebacterium glutamicum</i> Using Multiplex CRISPR Interference and High-Throughput Fermentation. Journal of Agricultural and Food Chemistry, 2019, 67, 308-319.	2.4	29
38	Transcriptome landscape of Synechococcus elongatus PCC 7942 for nitrogen starvation responses using RNA-seq. Scientific Reports, 2016, 6, 30584.	1.6	28
39	Engineering of <i>Corynebacterium glutamicum</i> for growth and succinate production from levoglucosan, a pyrolytic sugar substrate. FEMS Microbiology Letters, 2015, 362, fnv161.	0.7	27
40	Butyric acid production from softwood hydrolysate by acetate-consuming Clostridium sp. S1 with high butyric acid yield and selectivity. Bioresource Technology, 2016, 218, 1208-1214.	4.8	26
41	High production of 2,3-butanediol from glycerol without 1,3-propanediol formation by Raoultella ornithinolytica B6. Applied Microbiology and Biotechnology, 2017, 101, 2821-2830.	1.7	26
42	Effective isopropanol–butanol (IB) fermentation with high butanol content using a newly isolated Clostridium sp. A1424. Biotechnology for Biofuels, 2016, 9, 230.	6.2	24
43	Complete genome sequence of Bacillus sp. 275, producing extracellular cellulolytic, xylanolytic and ligninolytic enzymes. Journal of Biotechnology, 2017, 254, 59-62.	1.9	24
44	Bio-solar cell factories for photosynthetic isoprenoids production. Planta, 2019, 249, 181-193.	1.6	22
45	Scalable Cultivation of Engineered Cyanobacteria for Squalene Production from Industrial Flue Gas in a Closed Photobioreactor. Journal of Agricultural and Food Chemistry, 2020, 68, 10050-10055.	2.4	22
46	Current understanding of the cyanobacterial CRISPR-Cas systems and development of the synthetic CRISPR-Cas systems for cyanobacteria. Enzyme and Microbial Technology, 2020, 140, 109619.	1.6	22
47	In situ detoxification of lignocellulosic hydrolysate using a surfactant for butyric acid production by Clostridium tyrobutyricum ATCC 25755. Process Biochemistry, 2015, 50, 630-635.	1.8	21
48	Metabolic rewiring of synthetic pyruvate dehydrogenase bypasses for acetone production in cyanobacteria. Plant Biotechnology Journal, 2020, 18, 1860-1868.	4.1	21
49	Rapid identification of unknown carboxyl esterase activity in Corynebacterium glutamicum using RNA-guided CRISPR interference. Enzyme and Microbial Technology, 2018, 114, 63-68.	1.6	19
50	Deciphering bacterial xylose metabolism and metabolic engineering of industrial microorganisms for use as efficient microbial cell factories. Applied Microbiology and Biotechnology, 2018, 102, 9471-9480.	1.7	18
51	Biocontainment of Engineered <i>Synechococcus elongatus</i> PCC 7942 for Photosynthetic Production of α-Farnesene from CO ₂ . Journal of Agricultural and Food Chemistry, 2021, 69, 698-703.	2.4	18
52	Evolutionary Engineering of Cyanobacteria to Enhance the Production of α-Farnesene from CO ₂ . Journal of Agricultural and Food Chemistry, 2019, 67, 13658-13664.	2.4	17
53	Process design and evaluation of value-added chemicals production from biomass. Biotechnology and Bioprocess Engineering, 2012, 17, 1055-1061.	1.4	16
54	Aerobic and anaerobic cellulose utilization by Paenibacillus sp. CAA11 and enhancement of its cellulolytic ability by expressing a heterologous endoglucanase. Journal of Biotechnology, 2018, 268, 21-27.	1.9	16

#	Article	IF	CITATIONS
55	Application of targeted proteomics and biological parts assembly in E. coli to optimize the biosynthesis of an anti-malarial drug precursor, amorpha-4,11-diene. Chemical Engineering Science, 2013, 103, 21-28.	1.9	14
56	Transcriptomic analysis of Corynebacterium glutamicum in the response to the toxicity of furfural present in lignocellulosic hydrolysates. Process Biochemistry, 2015, 50, 347-356.	1.8	13
57	Toward solar biodiesel production from CO2 using engineered cyanobacteria. FEMS Microbiology Letters, 2017, 364, .	0.7	13
58	A Logic NAND Gate for Controlling Gene Expression in a Circadian Rhythm in Cyanobacteria. ACS Synthetic Biology, 2020, 9, 3210-3216.	1.9	13
59	Extreme furfural tolerance of a soil bacterium Enterobacter cloacae GGT036. Journal of Biotechnology, 2015, 193, 11-13.	1.9	12
60	Metabolic Engineering and Synthetic Biology of Cyanobacteria for Carbon Capture and Utilization. Biotechnology and Bioprocess Engineering, 2020, 25, 829-847.	1.4	12
61	Perspectives for biocatalytic lignin utilization: cleaving 4-O-5 and Cα–Cβ bonds in dimeric lignin model compounds catalyzed by a promiscuous activity of tyrosinase. Biotechnology for Biofuels, 2017, 10, 212.	6.2	11
62	Case study of xylose conversion to glycolate in Corynebacterium glutamicum: Current limitation and future perspective of the CRISPR-Cas systems. Enzyme and Microbial Technology, 2020, 132, 109395.	1.6	11
63	Butyric acid production from red algae by a newly isolated Clostridium sp. S1. Biotechnology Letters, 2015, 37, 1837-1844.	1.1	10
64	Influences of Media Compositions on Characteristics of Isolated Bacteria Exhibiting Lignocellulolytic Activities from Various Environmental Sites. Applied Biochemistry and Biotechnology, 2017, 183, 931-942.	1.4	10
65	Burkholderia jirisanensis sp. nov., isolated from forest soil. International Journal of Systematic and Evolutionary Microbiology, 2016, 66, 1260-1267.	0.8	10
66	Enhancing Fatty Acid Production of <i>Saccharomyces cerevisiae</i> as an Animal Feed Supplement. Journal of Agricultural and Food Chemistry, 2017, 65, 11029-11035.	2.4	9
67	Bioconversion of Xylose to Ethylene Glycol and Glycolate in Engineered <i>Corynebacterium glutamicum</i> . ACS Omega, 2019, 4, 21279-21287.	1.6	9
68	High Production of 2,3-Butanediol (2,3-BD) by Raoultella ornithinolytica B6 via Optimizing Fermentation Conditions and Overexpressing 2,3-BD Synthesis Genes. PLoS ONE, 2016, 11, e0165076.	1.1	9
69	RoboMoClo: A Robotics-Assisted Modular Cloning Framework for Multiple Gene Assembly in Biofoundry. ACS Synthetic Biology, 2022, 11, 1336-1348.	1.9	9
70	DeepTESR: A Deep Learning Framework to Predict the Degree of Translational Elongation Short Ramp for Gene Expression Control. ACS Synthetic Biology, 2022, 11, 1719-1726.	1.9	9
71	Analysis of Novel Antioxidant Sesquarterpenes (C35 Terpenes) Produced in Recombinant Corynebacterium glutamicum. Applied Biochemistry and Biotechnology, 2018, 186, 525-534.	1.4	8
72	Hybrid Embden–Meyerhof–Parnas Pathway for Reducing CO2 Loss and Increasing the Acetyl-CoA Levels during Microbial Fermentation. ACS Sustainable Chemistry and Engineering, 2021, 9, 12394-12405.	3.2	8

#	Article	IF	CITATIONS
73	Complete genome sequence of Enterobacter cloacae GGT036: A furfural tolerant soil bacterium. Journal of Biotechnology, 2015, 193, 43-44.	1.9	7
74	Engineering of Corynebacterium glutamicum to utilize methyl acetate, a potential feedstock derived by carbonylation of methanol with CO. Journal of Biotechnology, 2016, 224, 47-50.	1.9	7
75	Biosynthesis of the Calorie-Free Sweetener Precursor <i>ent</i> Kaurenoic Acid from CO ₂ Using Engineered Cyanobacteria. ACS Synthetic Biology, 2020, 9, 2979-2985.	1.9	7
76	Identification of small droplets of photosynthetic squalene in engineered <i>Synechococcus elongatus</i> PCC 7942 using TEM and selective fluorescent Nile red analysis. Letters in Applied Microbiology, 2018, 66, 523-529.	1.0	6
77	Microbial Bioprocess for Extracellular Squalene Production and Formulation of Nanoemulsions. ACS Sustainable Chemistry and Engineering, 2021, 9, 14263-14276.	3.2	5
78	Discovery of Urinary Biomarkers in Patients with Breast Cancer Based on Metabolomics. Mass Spectrometry Letters, 2013, 4, 59-66.	0.5	4
79	Metabolic pathway rewiring in engineered cyanobacteria for solar-to-chemical and solar-to-fuel production from CO2. Bioengineered, 2018, 9, 2-5.	1.4	2
80	Lignin utilization by Bacillus sp. associated with the growth enhancement and the molecular weight distribution change of lignin. New Biotechnology, 2014, 31, S102.	2.4	1