Sheerazed Boulkroun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6605042/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Colocalization of Wnt/β-Catenin and ACTH Signaling Pathways and Paracrine Regulation in Aldosterone-producing Adenoma. Journal of Clinical Endocrinology and Metabolism, 2022, 107, 419-434.	1.8	5
2	SOMATIC MUTATIONS IN ADRENALS FROM PATIENTS WITH PRIMARY ALDOSTERONISM NOT CURED AFTER ADRENALECTOMY SUGGEST COMMON PATHOGENIC MECHANISMS BETWEEN UNILATERAL AND BILATERAL DISEASE. Journal of Hypertension, 2021, 39, e9.	0.3	0
3	Somatic mutations of GNA11 and GNAQ in CTNNB1-mutant aldosterone-producing adenomas presenting in puberty, pregnancy or menopause. Nature Genetics, 2021, 53, 1360-1372.	9.4	37
4	Pathogenesis and treatment of primary aldosteronism. Nature Reviews Endocrinology, 2020, 16, 578-589.	4.3	65
5	Genetic, Cellular, and Molecular Heterogeneity in Adrenals With Aldosterone-Producing Adenoma. Hypertension, 2020, 75, 1034-1044.	1.3	89
6	Genetic and Genomic Mechanisms of Primary Aldosteronism. Trends in Molecular Medicine, 2020, 26, 819-832.	3.5	20
7	Old and new genes in primary aldosteronism. Best Practice and Research in Clinical Endocrinology and Metabolism, 2020, 34, 101375.	2.2	13
8	Pathogenesis of hypertension in a mouse model for human CLCN2 related hyperaldosteronism. Nature Communications, 2019, 10, 4678.	5.8	33
9	Retinoic acid receptor α as a novel contributor to adrenal cortex structure and function through interactions with Wnt and Vegfa signalling. Scientific Reports, 2019, 9, 14677.	1.6	10
10	Germline and somatic genetic basis of primary aldosteronism. Current Opinion in Endocrine and Metabolic Research, 2019, 8, 160-166.	0.6	0
11	A gain-of-function mutation in the CLCN2 chloride channel gene causes primary aldosteronism. Nature Genetics, 2018, 50, 355-361.	9.4	154
12	Overview of aldosterone-related genetic syndromes and recent advances. Current Opinion in Endocrinology, Diabetes and Obesity, 2018, 25, 147-154.	1.2	6
13	Molecular genetics of Conn adenomas in the era of exome analysis. Presse Medicale, 2018, 47, e151-e158.	0.8	5
14	Somatic and inherited mutations in primary aldosteronism. Journal of Molecular Endocrinology, 2017, 59, R47-R63.	1.1	42
15	Genetic Causes of Functional Adrenocortical Adenomas. Endocrine Reviews, 2017, 38, 516-537.	8.9	72
16	CACNA1H Mutations Are Associated With Different Forms of Primary Aldosteronism. EBioMedicine, 2016, 13, 225-236.	2.7	119
17	Aldosterone-Producing Adenoma With a Somatic KCNJ5 Mutation Revealing APC-Dependent Familial Adenomatous Polyposis. Journal of Clinical Endocrinology and Metabolism, 2016, 101, 3874-3878.	1.8	32
18	Molecular and Cellular Mechanisms of Aldosterone Producing Adenoma Development. Frontiers in Endocrinology, 2015, 6, 95.	1.5	20

Sheerazed Boulkroun

#	Article	IF	CITATIONS
19	Bilateral Idiopathic Adrenal Hyperplasia: Genetics and Beyond. Hormone and Metabolic Research, 2015, 47, 947-952.	0.7	19
20	An update on novel mechanisms of primary aldosteronism. Journal of Endocrinology, 2015, 224, R63-R77.	1.2	56
21	Inherited forms of mineralocorticoid hypertension. Best Practice and Research in Clinical Endocrinology and Metabolism, 2015, 29, 633-645.	2.2	32
22	Functional histopathological markers of aldosterone producing adenoma and somatic KCNJ5 mutations. Molecular and Cellular Endocrinology, 2015, 408, 220-226.	1.6	23
23	Different Somatic Mutations in Multinodular Adrenals With Aldosterone-Producing Adenoma. Hypertension, 2015, 66, 1014-1022.	1.3	55
24	Mast Cell Hyperplasia Is Associated With Aldosterone Hypersecretion in a Subset of Aldosterone-Producing Adenomas. Journal of Clinical Endocrinology and Metabolism, 2015, 100, E550-E560.	1.8	32
25	Genetic Spectrum and Clinical Correlates of Somatic Mutations in Aldosterone-Producing Adenoma. Hypertension, 2014, 64, 354-361.	1.3	248
26	WNT/β-catenin signalling is activated in aldosterone-producing adenomas and controls aldosterone production. Human Molecular Genetics, 2014, 23, 889-905.	1.4	157
27	Diastrophic Dysplasia Sulfate Transporter (SLC26A2) Is Expressed in the Adrenal Cortex and Regulates Aldosterone Secretion. Hypertension, 2014, 63, 1102-1109.	1.3	21
28	Inhibition of MicroRNA-92a Prevents Endothelial Dysfunction and Atherosclerosis in Mice. Circulation Research, 2014, 114, 434-443.	2.0	317
29	From Genetic Abnormalities to Pathophysiological Mechanisms. , 2014, , 53-74.		0
30	KCNJ5 mutations in aldosterone producing adenoma and relationship with adrenal cortex remodeling. Molecular and Cellular Endocrinology, 2013, 371, 221-227.	1.6	38
31	Somatic mutations in ATP1A1 and ATP2B3 lead to aldosterone-producing adenomas and secondary hypertension. Nature Genetics, 2013, 45, 440-444.	9.4	460
32	Genetics in endocrinology: Genetics of mineralocorticoid excess: an update for clinicians. European Journal of Endocrinology, 2013, 169, R15-R25.	1.9	26
33	Integrating Genetics and Genomics in Primary Aldosteronism. Hypertension, 2012, 60, 580-588.	1.3	22
34	A network perspective on metabolic inconsistency. BMC Systems Biology, 2012, 6, 41.	3.0	26
35	Prevalence, Clinical, and Molecular Correlates of <i>KCNJ5</i> Mutations in Primary Aldosteronism. Hypertension, 2012, 59, 592-598.	1.3	246
36	Concurrent primary aldosteronism and subclinical cortisol hypersecretion. Journal of Hypertension, 2011, 29, 1773-1777.	0.3	50

SHEERAZED BOULKROUN

#	Article	lF	CITATIONS
37	Aldosterone-Producing Adenoma Formation in the Adrenal Cortex Involves Expression of Stem/Progenitor Cell Markers. Endocrinology, 2011, 152, 4753-4763.	1.4	85
38	Mycolactone Suppresses T Cell Responsiveness by Altering Both Early Signaling and Posttranslational Events. Journal of Immunology, 2010, 184, 1436-1444.	0.4	76
39	Adrenal Cortex Remodeling and Functional Zona Glomerulosa Hyperplasia in Primary Aldosteronism. Hypertension, 2010, 56, 885-892.	1.3	128
40	Deubiquitylation Regulates Activation and Proteolytic Cleavage of ENaC. Journal of the American Society of Nephrology: JASN, 2008, 19, 2170-2180.	3.0	65
41	Vasopressin-inducible ubiquitin-specific protease 10 increases ENaC cell surface expression by deubiquitylating and stabilizing sorting nexin 3. American Journal of Physiology - Renal Physiology, 2008, 295, F889-F900.	1.3	62
42	(NDRG2) Stimulates Amiloride-sensitive Na+ Currents in Xenopus laevis Oocytes and Fisher Rat Thyroid Cells. Journal of Biological Chemistry, 2007, 282, 28264-28273.	1.6	33
43	Long-term effects of vasopressin on the subcellular localization of ENaC in the renal collecting system. Kidney International, 2006, 69, 1024-1032.	2.6	41
44	Expression of androgen receptor and androgen regulation of NDRG2 in the rat renal collecting duct. Pflugers Archiv European Journal of Physiology, 2005, 451, 388-394.	1.3	28
45	Aldosterone and tight junctions: modulation of claudin-4 phosphorylation in renal collecting duct cells. American Journal of Physiology - Cell Physiology, 2005, 289, C1513-C1521.	2.1	86
46	Vasopressin-stimulated CFTR Clâ^'currents are increased in the renal collecting duct cells of a mouse model of Liddle's syndrome. Journal of Physiology, 2005, 562, 271-284.	1.3	23
47	Calcyclin Is an Early Vasopressin-induced Gene in the Renal Collecting Duct. Journal of Biological Chemistry, 2002, 277, 25728-25734.	1.6	30
48	Characterization of Rat NDRG2 (N-Myc Downstream Regulated Gene 2), a Novel Early Mineralocorticoid-specific Induced Gene. Journal of Biological Chemistry, 2002, 277, 31506-31515.	1.6	131
49	Sgk: an old enzyme revisited. Journal of Clinical Investigation, 2002, 110, 1233-1234.	3.9	4