Paul M Kaye

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6604914/publications.pdf

Version: 2024-02-01

160 9,155 52 89 g-index

174 174 174 9341

times ranked

citing authors

docs citations

all docs

#	Article	IF	CITATIONS
1	Post-mortem lung tissue: the fossil record of the pathophysiology and immunopathology of severe COVID-19. Lancet Respiratory Medicine, the, 2022, 10, 95-106.	5.2	34
2	Integrated miRNA/cytokine/chemokine profiling reveals severity-associated step changes and principal correlates of fatality in COVID-19. IScience, 2022, 25, 103672.	1.9	25
3	Tissue Specific Dual RNA-Seq Defines Host–Parasite Interplay in Murine Visceral Leishmaniasis Caused by Leishmania donovani and Leishmania infantum. Microbiology Spectrum, 2022, 10, e0067922.	1.2	10
4	Estimating the global demand curve for a leishmaniasis vaccine: A generalisable approach based on global burden of disease estimates. PLoS Neglected Tropical Diseases, 2022, 16, e0010471.	1.3	14
5	Dissecting pathways to thrombocytopenia in a mouse model of visceral leishmaniasis. Blood Advances, 2021, 5, 1627-1637.	2.5	6
6	Hematological consequences of malaria infection in mice previously treated for visceral leishmaniasis. Wellcome Open Research, 2021, 6, 83.	0.9	0
7	Assessing public perception of a sand fly biting study on the pathway to a controlled human infection model for cutaneous leishmaniasis. Research Involvement and Engagement, 2021, 7, 33.	1.1	5
8	A clinical study to optimise a sand fly biting protocol for use in a controlled human infection model of cutaneous leishmaniasis (the FLYBITE study). Wellcome Open Research, 2021, 6, 168.	0.9	4
9	Hematological consequences of malaria in mice previously treated for visceral leishmaniasis. Wellcome Open Research, 2021, 6, 83.	0.9	O
10	High-speed, three-dimensional imaging reveals chemotactic behaviour specific to human-infective Leishmania parasites. ELife, 2021, 10 , .	2.8	5
11	Safety and immunogenicity of ChAd63-KH vaccine in post-kala-azar dermal leishmaniasis patients in Sudan. Molecular Therapy, 2021, 29, 2366-2377.	3.7	29
12	Spatially Resolved Immunometabolism to Understand Infectious Disease Progression. Frontiers in Microbiology, 2021, 12, 709728.	1.5	6
13	Interferon-Î ³ -Producing CD4+ T Cells Drive Monocyte Activation in the Bone Marrow During Experimental Leishmania donovani Infection. Frontiers in Immunology, 2021, 12, 700501.	2.2	9
14	Human leishmaniasis vaccines: Use cases, target population and potential global demand. PLoS Neglected Tropical Diseases, 2021, 15, e0009742.	1.3	22
15	Characterization of a new Leishmania major strain for use in a controlled human infection model. Nature Communications, 2021, 12, 215.	5.8	28
16	Vaccines against leishmaniasis: using controlled human infection models to accelerate development. Expert Review of Vaccines, 2021, 20, 1407-1418.	2.0	10
17	Early reduction in PD-L1 expression predicts faster treatment response in human cutaneous leishmaniasis. Journal of Clinical Investigation, 2021, 131, .	3.9	5
18	Distinct immune regulatory receptor profiles linked to altered monocyte subsets in sarcoidosis. ERJ Open Research, 2021, 7, 00804-2020.	1.1	2

#	Article	IF	Citations
19	Overcoming roadblocks in the development of vaccines for leishmaniasis. Expert Review of Vaccines, 2021, 20, 1419-1430.	2.0	18
20	Spatial Point Pattern Analysis Identifies Mechanisms Shaping the Skin Parasite Landscape in Leishmania donovani Infection. Frontiers in Immunology, 2021, 12, 795554.	2.2	3
21	Leishmania braziliensis prostaglandin F2α synthase impacts host infection. Parasites and Vectors, 2020, 13, 9.	1.0	10
22	Cytokines and splenic remodelling during Leishmania donovani infection. Cytokine: X, 2020, 2, 100036.	0.5	12
23	Quantitative Optical Diffraction Tomography Imaging of Mouse Platelets. Frontiers in Physiology, 2020, 11, 568087.	1.3	11
24	The potential impact of human visceral leishmaniasis vaccines on population incidence. PLoS Neglected Tropical Diseases, 2020, 14, e0008468.	1.3	12
25	<i>Malat1</i> Suppresses Immunity to Infection through Promoting Expression of Maf and IL-10 in Th Cells. Journal of Immunology, 2020, 204, 2949-2960.	0.4	52
26	Host transcriptomic signature as alternative test-of-cure in visceral leishmaniasis patients co-infected with HIV. EBioMedicine, 2020, 55, 102748.	2.7	16
27	Leishmaniasis immunopathology—impact on design and use of vaccines, diagnostics and drugs. Seminars in Immunopathology, 2020, 42, 247-264.	2.8	51
28	Metastatic breast cancer cells induce altered microglial morphology and electrical excitability in vivo. Journal of Neuroinflammation, 2020, 17, 87.	3.1	22
29	The potential impact of human visceral leishmaniasis vaccines on population incidence., 2020, 14, e0008468.		0
30	The potential impact of human visceral leishmaniasis vaccines on population incidence., 2020, 14, e0008468.		0
31	The potential impact of human visceral leishmaniasis vaccines on population incidence., 2020, 14, e0008468.		0
32	The impact of leishmaniasis on mental health and psychosocial well-being: A systematic review. PLoS ONE, 2019, 14, e0223313.	1.1	44
33	IL-4 Mediated Resistance of BALB/c Mice to Visceral Leishmaniasis Is Independent of IL-4Rα Signaling via T Cells. Frontiers in Immunology, 2019, 10, 1957.	2.2	10
34	miRâ€132 suppresses transcription of ribosomal proteins to promote protective Th1 immunity. EMBO Reports, 2019, 20, .	2.0	12
35	Tissue-specific transcriptomic changes associated with AmBisome \hat{A}^{o} treatment of BALB/c mice with experimental visceral leishmaniasis. Wellcome Open Research, 2019, 4, 198.	0.9	8
36	CD4+ T Cells Alter the Stromal Microenvironment and Repress Medullary Erythropoiesis in Murine Visceral Leishmaniasis. Frontiers in Immunology, 2018, 9, 2958.	2.2	25

#	Article	IF	Citations
37	Stromal Cell Responses in Infection. Advances in Experimental Medicine and Biology, 2018, 1060, 23-36.	0.8	2
38	Macrophage Transactivation for Chemokine Production Identified as a Negative Regulator of Granulomatous Inflammation Using Agent-Based Modeling. Frontiers in Immunology, 2018, 9, 637.	2.2	6
39	VALIDATE: Exploiting the synergy between complex intracellular pathogens to expedite vaccine research and development for tuberculosis, leishmaniasis, melioidosis and leprosy. F1000Research, 2018, 7, 485.	0.8	2
40	Tissue and host species-specific transcriptional changes in models of experimental visceral leishmaniasis. Wellcome Open Research, 2018, 3, 135.	0.9	21
41	Tissue and host species-specific transcriptional changes in models of experimental visceral leishmaniasis. Wellcome Open Research, 2018, 3, 135.	0.9	22
42	Tegumentary leishmaniasis and coinfections other than HIV. PLoS Neglected Tropical Diseases, 2018, 12, e0006125.	1.3	33
43	Salmonella enterica Serovar Typhi Lipopolysaccharide O-Antigen Modification Impact on Serum Resistance and Antibody Recognition. Infection and Immunity, 2017, 85, .	1.0	29
44	In vivo imaging of systemic transport and elimination of xenobiotics and endogenous molecules in mice. Archives of Toxicology, 2017, 91, 1335-1352.	1.9	64
45	Skin parasite landscape determines host infectiousness in visceral leishmaniasis. Nature Communications, 2017, 8, 57.	5. 8	55
46	Immunomodulatory Therapy of Visceral Leishmaniasis in Human Immunodeficiency Virus-Coinfected Patients. Frontiers in Immunology, 2017, 8, 1943.	2.2	32
47	A third generation vaccine for human visceral leishmaniasis and post kala azar dermal leishmaniasis: First-in-human trial of ChAd63-KH. PLoS Neglected Tropical Diseases, 2017, 11, e0005527.	1.3	109
48	TNF signalling drives expansion of bone marrow CD4+ T cells responsible for HSC exhaustion in experimental visceral leishmaniasis. PLoS Pathogens, 2017, 13, e1006465.	2.1	24
49	Immunology of Bacterial and Parasitic Diseases: An Overview. , 2016, , 1-6.		2
50	CD4+ Recent Thymic Emigrants Are Recruited into Granulomas during Leishmania donovani Infection but Have Limited Capacity for Cytokine Production. PLoS ONE, 2016, 11, e0163604.	1.1	9
51	Recombinant polymorphic membrane protein D in combination with a novel, second-generation lipid adjuvant protects against intra-vaginal Chlamydia trachomatis infection in mice. Vaccine, 2016, 34, 4123-4131.	1.7	25
52	Reduced expression of monocyte CD200R is associated with enhanced proinflammatory cytokine production in sarcoidosis. Scientific Reports, 2016, 6, 38689.	1.6	20
53	Bone marrow-derived and resident liver macrophages display unique transcriptomic signatures but similar biological functions. Journal of Hepatology, 2016, 65, 758-768.	1.8	197
54	Lessons from other diseases: granulomatous inflammation in leishmaniasis. Seminars in Immunopathology, 2016, 38, 249-260.	2.8	59

#	Article	IF	CITATIONS
55	M2 Polarization of Monocytes-Macrophages Is a Hallmark of Indian Post Kala-Azar Dermal Leishmaniasis. PLoS Neglected Tropical Diseases, 2015, 9, e0004145.	1.3	66
56	The Neurotrophic Receptor Ntrk2 Directs Lymphoid Tissue Neovascularization during Leishmania donovani Infection. PLoS Pathogens, 2015, 11, e1004681.	2.1	18
57	Bile canalicular dynamics in hepatocyte sandwich cultures. Archives of Toxicology, 2015, 89, 1861-1870.	1.9	49
58	Cervico-Vaginal Immunoglobulin G Levels Increase Post-Ovulation Independently of Neutrophils. PLoS ONE, 2014, 9, e114824.	1.1	5
59	Post kala-azar dermal leishmaniasis: an unresolved mystery. Trends in Parasitology, 2014, 30, 65-74.	1.5	123
60	Tissue Requirements for Establishing Long-Term CD4+ T Cell–Mediated Immunity following <i>Leishmania donovani</i> Infection. Journal of Immunology, 2014, 192, 3709-3718.	0.4	23
61	A Transcriptomic Network Identified in Uninfected Macrophages Responding to Inflammation Controls Intracellular Pathogen Survival. Cell Host and Microbe, 2013, 14, 357-368.	5.1	44
62	Case study for a vaccine against leishmaniasis. Vaccine, 2013, 31, B244-B249.	1.7	97
63	A Petri Net Model of Granulomatous Inflammation: Implications for IL-10 Mediated Control of Leishmania donovani Infection. PLoS Computational Biology, 2013, 9, e1003334.	1.5	36
64	Functional complexity of the Leishmania granuloma and the potential of in silico modeling. Frontiers in Immunology, 2013, 4, 35.	2.2	39
65	Regiospecific Methylation of a Dietary Flavonoid Scaffold Selectively Enhances IL- 1^2 Production following Toll-like Receptor 2 Stimulation in THP-1 Monocytes. Journal of Biological Chemistry, 2013, 288, 21126-21135.	1.6	14
66	IL-10-Producing Th1 Cells and Disease Progression Are Regulated by Distinct CD11c+ Cell Populations during Visceral Leishmaniasis. PLoS Pathogens, 2012, 8, e1002827.	2.1	60
67	Therapeutic Vaccination With Recombinant Adenovirus Reduces Splenic Parasite Burden in Experimental Visceral Leishmaniasis. Journal of Infectious Diseases, 2012, 205, 853-863.	1.9	65
68	Stromal Cell Induction of Regulatory Dendritic Cells. Frontiers in Immunology, 2012, 3, 262.	2.2	11
69	IL-7–producing stromal cells are critical for lymph node remodeling. Blood, 2012, 120, 4675-4683.	0.6	151
70	IRF7 Regulates TLR2-Mediated Activation of Splenic CD11chi Dendritic Cells. PLoS ONE, 2012, 7, e41050.	1.1	15
71	B Cell: T Cell Interactions Occur within Hepatic Granulomas during Experimental Visceral Leishmaniasis. PLoS ONE, 2012, 7, e34143.	1.1	28
72	Functional Analysis of Leishmania Cyclopropane Fatty Acid Synthetase. PLoS ONE, 2012, 7, e51300.	1.1	25

#	Article	IF	CITATIONS
73	Compartment-Specific Remodeling of Splenic Micro-Architecture during Experimental Visceral Leishmaniasis. American Journal of Pathology, 2011, 179, 23-29.	1.9	50
74	Leishmania-host interactions: what has imaging taught us?. Cellular Microbiology, 2011, 13, 1659-1667.	1.1	33
75	Visceral leishmaniasis: immunology and prospects for a vaccine. Clinical Microbiology and Infection, 2011, 17, 1462-1470.	2.8	87
76	Leishmaniasis: complexity at the host–pathogen interface. Nature Reviews Microbiology, 2011, 9, 604-615.	13.6	784
77	Endogenous IL-13 Plays a Crucial Role in Liver Granuloma Maturation During Leishmania donovani Infection, Independent of IL-4Rα–Responsive Macrophages and Neutrophils. Journal of Infectious Diseases, 2011, 204, 36-43.	1.9	35
78	Interferon Regulatory Factor 7 Contributes to the Control of <i>Leishmania donovani </i> li>in the Mouse Liver. Infection and Immunity, 2011, 79, 1057-1066.	1.0	21
79	Critical Roles for LIGHT and Its Receptors in Generating T Cell-Mediated Immunity during Leishmania donovani Infection. PLoS Pathogens, 2011, 7, e1002279.	2.1	26
80	Single Dose Novel Salmonella Vaccine Enhances Resistance against Visceralizing L. major and L. donovani Infection in Susceptible BALB/c Mice. PLoS Neglected Tropical Diseases, 2011, 5, e1406.	1.3	17
81	<i>Leishmania donovani</i> à€induced expression of signal regulatory protein α on Kupffer cells enhances hepatic invariant NKTâ€cell activation. European Journal of Immunology, 2010, 40, 117-123.	1.6	27
82	Oral Activated Charcoal Prevents Experimental Cerebral Malaria in Mice and in a Randomized Controlled Clinical Trial in Man Did Not Interfere with the Pharmacokinetics of Parenteral Artesunate. PLoS ONE, 2010, 5, e9867.	1.1	11
83	Stromal Cell-Derived CXCL12 and CCL8 Cooperate To Support Increased Development of Regulatory Dendritic Cells FollowingLeishmaniaInfection. Journal of Immunology, 2010, 185, 2360-2371.	0.4	25
84	Innate Killing of Leishmania donovani by Macrophages of the Splenic Marginal Zone Requires IRF-7. PLoS Pathogens, 2010, 6, e1000813.	2.1	62
85	Dynamic Imaging of Experimental Leishmania donovani-Induced Hepatic Granulomas Detects Kupffer Cell-Restricted Antigen Presentation to Antigen-Specific CD8+ T Cells. PLoS Pathogens, 2010, 6, e1000805.	2.1	122
86	Immunomodulators: use in combined therapy against leishmaniasis. Expert Review of Anti-Infective Therapy, 2010, 8, 739-742.	2.0	29
87	Inhibition of receptor tyrosine kinases restores immunocompetence and improves immune-dependent chemotherapy against experimental leishmaniasis in mice. Journal of Clinical Investigation, 2010, 120, 1204-1216.	3.9	47
88	A Petri Net Model of Granulomatous Inflammation. Lecture Notes in Computer Science, 2010, , 1-3.	1.0	0
89	Modelling and simulation of granuloma formation in visceral leishmaniasis. , 2009, , .		13
90	Expression of vFLIP in a Lentiviral Vaccine Vector Activates NF-κB, Matures Dendritic Cells, and Increases CD8 ⁺ T-Cell Responses. Journal of Virology, 2009, 83, 1555-1562.	1.5	36

#	Article	IF	CITATIONS
91	Alveolar Macrophages Transport Pathogens to Lung Draining Lymph Nodes. Journal of Immunology, 2009, 183, 1983-1989.	0.4	157
92	Dendritic Cells Matured by Inflammation Induce CD86-Dependent Priming of Naive CD8+ T Cells in the Absence of Their Cognate Peptide Antigen. Journal of Immunology, 2009, 183, 7095-7103.	0.4	21
93	SIGNR1-Negative Red Pulp Macrophages Protect against Acute Streptococcal Sepsis after Leishmania donovani-Induced Loss of Marginal Zone Macrophages. American Journal of Pathology, 2009, 175, 1107-1115.	1.9	29
94	Comparative Expression Profiling of Leishmania: Modulation in Gene Expression between Species and in Different Host Genetic Backgrounds. PLoS Neglected Tropical Diseases, 2009, 3, e476.	1.3	86
95	Postgenomic research on leishmaniasis: a critical self-appraisal. Trends in Parasitology, 2008, 24, 401-405.	1.5	1
96	Posttranscriptional Regulation of Il10 Gene Expression Allows Natural Killer Cells to Express Immunoregulatory Function. Immunity, 2008, 29, 295-305.	6.6	175
97	VCAM-1 and VLA-4 Modulate Dendritic Cell IL-12p40 Production in Experimental Visceral Leishmaniasis. PLoS Pathogens, 2008, 4, e1000158.	2.1	39
98	Temporal Regulation of Interleukin-12p70 (IL-12p70) and IL-12-Related Cytokines in Splenic Dendritic Cell Subsets during <i>Leishmania donovani</i> li>Infection. Infection and Immunity, 2008, 76, 239-249.	1.0	36
99	Deletion of IL-4Rα on CD4 T Cells Renders BALB/c Mice Resistant to Leishmania major Infection. PLoS Pathogens, 2007, 3, e68.	2.1	61
100	Evidence for the involvement of lungâ€specific γδT cell subsets in local responses to ⟨i⟩Streptococcus pneumoniae⟨/i⟩ infection. European Journal of Immunology, 2007, 37, 3404-3413.	1.6	51
101	The Schistosoma mansoni Hepatic Egg Granuloma Provides a Favorable Microenvironment for Sustained Growth of Leishmania donovani. American Journal of Pathology, 2006, 169, 943-953.	1.9	40
102	Stromal-cell regulation of dendritic-cell differentiation and function. Trends in Immunology, 2006, 27, 580-587.	2.9	53
103	Distinct roles for IL-6 and IL-12p40 in mediating protection againstLeishmania donovani and the expansion of IL-10+ CD4+ T cells. European Journal of Immunology, 2006, 36, 1764-1771.	1.6	117
104	CD11b Regulates Recruitment of Alveolar Macrophages but Not Pulmonary Dendritic Cells after Pneumococcal Challenge. Journal of Infectious Diseases, 2006, 193, 205-213.	1.9	93
105	Adoptive Immunotherapy against Experimental Visceral Leishmaniasis with CD8+ T Cells Requires the Presence of Cognate Antigen. Infection and Immunity, 2006, 74, 773-776.	1.0	61
106	In Vivo Recognition of Ovalbumin Expressed by TransgenicLeishmanials Determined by Its Subcellular Localization. Journal of Immunology, 2006, 176, 4826-4833.	0.4	20
107	Antigen-Experienced T Cells Limit the Priming of Naive T Cells during Infection with <i>Leishmania major </i> li>. Journal of Immunology, 2006, 177, 925-933.	0.4	13
108	Loss of Dendritic Cell Migration and Impaired Resistance to <i>Leishmania donovani</i> Infection in Mice Deficient in CCL19 and CCL21. Journal of Immunology, 2006, 176, 5486-5493.	0.4	71

#	Article	IF	Citations
109	The fate of heterologous CD4+ T?cells duringLeishmania donovaniinfection. European Journal of Immunology, 2005, 35, 498-504.	1.6	22
110	The Role Played by Tumor Necrosis Factor during Localized and Systemic Infection with Streptococcus pneumoniae. Journal of Infectious Diseases, 2005, 191, 1538-1547.	1.9	37
111	Invariant NKT Cells Are Essential for the Regulation of Hepatic CXCL10 Gene Expression during Leishmania donovani Infection. Infection and Immunity, 2005, 73, 7541-7547.	1.0	25
112	Chronic Leishmania donovani Infection Promotes Bystander CD8 + -T-Cell Expansion and Heterologous Immunity. Infection and Immunity, 2005, 73, 7996-8001.	1.0	19
113	Protective vaccination against experimental canine visceral leishmaniasis using a combination of DNA and protein immunization with cysteine proteinases type I and II of Vaccine, 2005, 23, 3716-3725.	1.7	130
114	Localization of Marginal Zone Macrophages Is Regulated by C-C Chemokine Ligands 21/19. Journal of Immunology, 2004, 173, 4815-4820.	0.4	54
115	Granulomatous diseases. International Journal of Experimental Pathology, 2004, 81, 289-290.	0.6	5
116	The immunopathology of experimental visceral leishmaniasis. Immunological Reviews, 2004, 201, 239-253.	2.8	200
117	Macrophages, pathology and parasite persistence in experimental visceral leishmaniasis. Trends in Parasitology, 2004, 20, 524-530.	1.5	156
118	Immunotherapy with OX40L-Fc or anti-CTLA-4 enhances local tissue responses and killing ofLeishmania donovani. European Journal of Immunology, 2004, 34, 1433-1440.	1.6	74
119	Distinct Roles for Lymphotoxin- $\hat{l}\pm$ and Tumor Necrosis Factor in the Control of Leishmania donovani Infection. American Journal of Pathology, 2004, 165, 2123-2133.	1.9	69
120	Stromal Cells Direct Local Differentiation of Regulatory Dendritic Cells. Immunity, 2004, 21, 805-816.	6.6	170
121	CD8+ T-cell priming regulated by cytokines of the innate immune system. Trends in Molecular Medicine, 2004, 10, 366-371.	3.5	17
122	Shaping the immune response to parasites: role of dendritic cells. Current Opinion in Immunology, 2003, 15, 421-429.	2.4	104
123	Natural antibodies and complement are endogenous adjuvants for vaccine-induced CD8+ T-cell responses. Nature Medicine, 2003, 9, 1287-1292.	15.2	189
124	Leishmania-Induced Inhibition of Macrophage Antigen Presentation Analyzed at the Single-Cell Level. Journal of Immunology, 2003, 171, 6706-6713.	0.4	42
125	Leishmaniasis: new approaches to disease control. BMJ: British Medical Journal, 2003, 326, 377-382.	2.4	231
126	Both Interleukin-4 (IL-4) and IL-4 Receptor α Signaling Contribute to the Development of Hepatic Granulomas with Optimal Antileishmanial Activity. Infection and Immunity, 2003, 71, 4804-4807.	1.0	119

#	Article	IF	Citations
127	Locally Up-regulated Lymphotoxin α, Not Systemic Tumor Necrosis Factor α, Is the Principle Mediator of Murine Cerebral Malaria. Journal of Experimental Medicine, 2002, 195, 1371-1377.	4.2	235
128	A Role for Tumor Necrosis Factor- \hat{l}_{\pm} in Remodeling the Splenic Marginal Zone during Leishmania donovani Infection. American Journal of Pathology, 2002, 161, 429-437.	1.9	130
129	The Immunology of Visceral Leishmaniasis: Current Status. World Class Parasites, 2002, , 137-150.	0.3	3
130	Dendritic cells at the host-pathogen interface. Nature Immunology, 2002, 3, 699-702.	7.0	123
131	Defective CCR7 expression on dendritic cells contributes to the development of visceral leishmaniasis. Nature Immunology, 2002, 3, 1185-1191.	7.0	168
132	CD95 is required for the early control of parasite burden in the liver of Leishmania donovani-infected mice. European Journal of Immunology, 2001, 31, 1199-1210.	1.6	49
133	Interleukin-13 in Iranian patients with visceral leishmaniasis: relationship to other Th2 and Th1 cytokines. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2001, 95, 85-88.	0.7	45
134	Tissue Cytokine Responses in Canine Visceral Leishmaniasis. Journal of Infectious Diseases, 2001, 183, 1421-1424.	1.9	93
135	Organ-specific immune responses associated with infectious disease. Trends in Immunology, 2000, 21, 73-78.	7.5	174
136	Leishmania donovani infection of bone marrow stromal macrophages selectively enhances myelopoiesis, by a mechanism involving GM-CSF and TNF-α. Blood, 2000, 95, 1642-1651.	0.6	64
137	Enhanced Hematopoietic Activity Accompanies Parasite Expansion in the Spleen and Bone Marrow of Mice Infected with Leishmania donovani. Infection and Immunity, 2000, 68, 1840-1848.	1.0	80
138	B Cell-Deficient Mice Are Highly Resistant to <i>Leishmania</i> àê-̂ <i>donovani</i> Infection, but Develop Neutrophil-Mediated Tissue Pathology. Journal of Immunology, 2000, 164, 3681-3688.	0.4	182
139	Immunization with a Recombinant Stage-Regulated Surface Protein from <i>Leishmania donovani </i> Induces Protection Against Visceral Leishmaniasis. Journal of Immunology, 2000, 165, 7064-7071.	0.4	182
140	Granulomatous diseases. International Journal of Experimental Pathology, 2000, 81, 289-290.	0.6	7
141	The role of dendritic cells in the induction and regulation of immunity to microbial infection. Current Opinion in Immunology, 1999, 11, 392-399.	2.4	260
142	Parasite-derived immunoregulatory molecules. Parasite Immunology, 1999, 21, 595-596.	0.7	4
143	Leishmania donovani infection initiates T cell-independent chemokine responses, which are subsequently amplified in a T cell-dependent manner. European Journal of Immunology, 1999, 29, 203-214.	1.6	80
144	Neutralization of IL-12 demonstrates the existence of discrete organ-specific phases in the control of Leishmania donovani. European Journal of Immunology, 1998, 28, 669-680.	1.6	159

#	Article	IF	CITATIONS
145	Dendritic cells, but not macrophages, produce IL-12 immediately followingLeishmania donovani infection. European Journal of Immunology, 1998, 28, 687-695.	1.6	251
146	Dendritic cells, but not macrophages, produce IL-12 immediately following Leishmania donovani infection., 1998, 28, 687.		3
147	Epitope cleavage byLeishmania endopeptidase(s) limits the efficiency of the exogenous pathway of major histocompatibility complex class l-associated antigen presentation. European Journal of Immunology, 1997, 27, 1005-1013.	1.6	29
148	Anin VivoAnalysis of Cytokine Production duringLeishmania donovaniInfection inscidMice. Experimental Parasitology, 1996, 84, 195-202.	0.5	48
149	Costimulation and the regulation of antimicrobial immunity. Trends in Immunology, 1995, 16, 423-427.	7.5	57
150	Co-stimulatory activity of Leishmania-infected macrophages: Reply. Parasitology Today, 1995, 11, 254.	3.1	0
151	Deficient expression of co-stimulatory molecules onLeishmania-infected macrophages. European Journal of Immunology, 1994, 24, 2850-2854.	1.6	118
152	Pathways of macrophage activation and innate immunity. Immunology Letters, 1994, 43, 67-70.	1.1	15
153	Antigens targeted to the Leishmania phagolysosome are processed for CD4+ T cell recognition. European Journal of Immunology, 1993, 23, 2311-2319.	1.6	25
154	Infectious diseases of humans: Dynamics and control. Trends in Immunology, 1993, 14, 616.	7.5	1
155	Altered course of visceral leishmaniasis in mice expressing transgenic I-E molecules. European Journal of Immunology, 1992, 22, 357-364.	1.6	38
156	Presentation of Leishmania donovani promastigotes occurs via a brefeldin A-sensitive pathway. European Journal of Immunology, 1991, 21, 2407-2413.	1.6	21
157	Antigen presentation by dendritic cells provides optimal stimulation for the production of interleukin (IL) 2, IL 4 and interferon- \hat{I}^3 by allogeneic T cells. European Journal of Immunology, 1991, 21, 2803-2809.	1.6	27
158	A modified colorimetric assay of macrophage activation for intracellular cytotoxicity against Leishmania parasites. Journal of Immunological Methods, 1990, 127, 11-18.	0.6	90
159	The Biochemistry and Cell Biology of Antigen Processing. Immunological Reviews, 1988, 106, 33-58.	2.8	63
160	Murine Leishmaniasis. , 0, , 117-146.		3