Daniela A Wilson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6604802/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Light driven micromotor swarm for tumor photothermal therapy. Applied Materials Today, 2022, 26, 101348.	4.3	14
2	Microâ€Nano Motors with Taxis Behavior: Principles, Designs, and Biomedical Applications. Small, 2022, 18, e2106263.	10.0	20
3	Mechanical Activation of Immune T Cells via a Water Driven Nanomotor. Advanced Healthcare Materials, 2022, 11, e2200042.	7.6	9
4	Visible-light-driven TiO2@N-Au nanorobot penetrating the vitreous. Applied Materials Today, 2022, 27, 101455.	4.3	8
5	Magnetically driven helical hydrogel micromotor for tumor DNA detection. Applied Materials Today, 2022, 27, 101456.	4.3	9
6	Photo-Cross-Linking Polymersome Nanoreactors with Size-Selective Permeability. Macromolecules, 2022, 55, 5744-5755.	4.8	6
7	Photoelectrochemical TiO ₂ â€Auâ€Nanowireâ€Based Motor for Precise Modulation of Singleâ€Neuron Activities. Advanced Functional Materials, 2021, 31, 2008667.	14.9	37
8	Membrane folding and shape transformation in biomimetic vesicles. Soft Matter, 2021, 17, 1724-1730.	2.7	9
9	Hydrogenâ€Powered Microswimmers for Precise and Active Hydrogen Therapy Towards Acute Ischemic Stroke. Advanced Functional Materials, 2021, 31, 2009475.	14.9	37
10	Exploring New Horizons in Liquid Compartmentalization via Microfluidics. Biomacromolecules, 2021, 22, 1759-1769.	5.4	8
11	Generating biomembrane-like local curvature in polymersomes via dynamic polymer insertion. Nature Communications, 2021, 12, 2235.	12.8	20
12	Control the Neural Stem Cell Fate with Biohybrid Piezoelectrical Magnetite Micromotors. Nano Letters, 2021, 21, 3518-3526.	9.1	44
13	Apoptotic Tumor DNA Activated Nanomotor Chemotaxis. Nano Letters, 2021, 21, 8086-8094.	9.1	35
14	Magnetically powered helical hydrogel motor for macrophage delivery. Applied Materials Today, 2021, 25, 101197.	4.3	6
15	Tailoring Polymersome Shape Using the Hofmeister Effect. Biomacromolecules, 2020, 21, 89-94.	5.4	25
16	Water powered and anti-CD3 loaded mg micromotor for t cell activation. Applied Materials Today, 2020, 21, 100839.	4.3	13
17	Two-Photon-Induced [2 + 2] Cycloaddition of Bis-thymines: A Biocompatible and Reversible Approach. ACS Omega, 2020, 5, 11547-11552.	3.5	2
18	Supramolecular nanomotors with "pH taxis―for active drug delivery in the tumor microenvironment. Nanoscale, 2020, 12, 22495-22501.	5.6	26

#	Article	IF	CITATIONS
19	Leveraging synthetic particles for communication: from passive to active systems. Nanoscale, 2020, 12, 21015-21033.	5.6	14
20	Enzyme catalysis powered micro/nanomotors for biomedical applications. Journal of Materials Chemistry B, 2020, 8, 7319-7334.	5.8	52
21	3Dâ€Printed Micromotors for Biomedical Applications. Advanced Materials Technologies, 2020, 5, 2000435.	5.8	12
22	Magnesium-based micromotors for enhanced active and synergistic hydrogen chemotherapy. Applied Materials Today, 2020, 20, 100694.	4.3	37
23	Photosynthesis Drives the Motion of Bioâ€nanomotors. Advanced Intelligent Systems, 2020, 2, 2000028.	6.1	11
24	Microâ€∤Nanomotors toward Biomedical Applications: The Recent Progress in Biocompatibility. Small, 2020, 16, e1906184.	10.0	111
25	Selfâ€Propelled PLGA Micromotor with Chemotactic Response to Inflammation. Advanced Healthcare Materials, 2020, 9, e1901710.	7.6	55
26	Photosynthesis Drives the Motion of Bioâ€nanomotors. Advanced Intelligent Systems, 2020, 2, 2070051.	6.1	1
27	Modular Approach to the Functionalization of Polymersomes. Biomacromolecules, 2020, 21, 1853-1864.	5.4	18
28	Wireless Manipulation of Magnetic/Piezoelectric Micromotors for Precise Neural Stem‣ike Cell Stimulation. Advanced Functional Materials, 2020, 30, 1910108.	14.9	81
29	Supramolecular spheres assembled from covalent and supramolecular dendritic crowns dictate the supramolecular orientational memory effect mediated by Frank–Kasper phases. Giant, 2020, 1, 100001.	5.1	40
30	Designing Molecular Building Blocks for Functional Polymersomes. Israel Journal of Chemistry, 2019, 59, 928-944.	2.3	10
31	Thermoresponsive Brushes Facilitate Effective Reinforcement of Calcium Phosphate Cements. ACS Applied Materials & Interfaces, 2019, 11, 26690-26703.	8.0	10
32	Nonequilibrium Reshaping of Polymersomes <i>via</i> Polymer Addition. ACS Nano, 2019, 13, 12767-12773.	14.6	29
33	Enzyme-Powered Nanomotors with Controlled Size for Biomedical Applications. ACS Nano, 2019, 13, 10191-10200.	14.6	93
34	A Microfluidic Tool for Fineâ€īuning Motion of Soft Micromotors. Advanced Functional Materials, 2019, 29, 1904889.	14.9	18
35	Fuelâ€Free Microâ€∤Nanomotors as Intelligent Therapeutic Agents. Chemistry - an Asian Journal, 2019, 14, 2325-2335.	3.3	23
36	Charting a course for chemistry. Nature Chemistry, 2019, 11, 286-294.	13.6	18

#	Article	IF	CITATIONS
37	Supramolecular Spheres Self-Assembled from Conical Dendrons Are Chiral. Journal of the American Chemical Society, 2019, 141, 6162-6166.	13.7	42
38	Motion Control of Polymeric Nanomotors Based on Host–Guest Interactions. Angewandte Chemie, 2019, 131, 8779-8783.	2.0	9
39	Motion Control of Polymeric Nanomotors Based on Host–Guest Interactions. Angewandte Chemie - International Edition, 2019, 58, 8687-8691.	13.8	34
40	Fabrication of Selfâ€Propelled Micro―and Nanomotors Based on Janus Structures. Chemistry - A European Journal, 2019, 25, 8663-8680.	3.3	37
41	Stimulus-responsive nanomotors based on gated enzyme-powered Janus Au–mesoporous silica nanoparticles for enhanced cargo delivery. Chemical Communications, 2019, 55, 13164-13167.	4.1	46
42	Spatial control over catalyst positioning on biodegradable polymeric nanomotors. Nature Communications, 2019, 10, 5308.	12.8	51
43	Active, Autonomous, and Adaptive Polymeric Particles for Biomedical Applications. Biomacromolecules, 2019, 20, 1135-1145.	5.4	13
44	Screening Libraries of Amphiphilic Janus Dendrimers Based on Natural Phenolic Acids to Discover Monodisperse Unilamellar Dendrimersomes. Biomacromolecules, 2019, 20, 712-727.	5.4	36
45	Stomatocyte in Stomatocyte: A New Shape of Polymersome Induced via Chemical-Addition Methodology. Nano Letters, 2018, 18, 2081-2085.	9.1	35
46	Nanomotorâ€Based Strategy for Enhanced Penetration across Vasculature Model. Advanced Functional Materials, 2018, 28, 1706117.	14.9	59
47	Hierarchical Self-Organization of Chiral Columns from Chiral Supramolecular Spheres. Journal of the American Chemical Society, 2018, 140, 13478-13487.	13.7	34
48	Clinical Evidence for Use of a Noninvasive Biosensor for Tear Glucose as an Alternative to Painful Finger-Prick for Diabetes Management Utilizing a Biopolymer Coating. Biomacromolecules, 2018, 19, 4504-4511.	5.4	105
49	Poly(ionic liquid)s Based Brush Type Nanomotor. Micromachines, 2018, 9, 364.	2.9	3
50	A Supramolecular Approach to Nanoscale Motion: Polymersome-Based Self-Propelled Nanomotors. Accounts of Chemical Research, 2018, 51, 1891-1900.	15.6	54
51	Enzyme-driven biodegradable nanomotor based on tubular-shaped polymeric vesicles. Polymer Chemistry, 2018, 9, 3190-3194.	3.9	35
52	Biodegradable Synthetic Organelles Demonstrate ROS Shielding in Human-Complex-I-Deficient Fibroblasts. ACS Central Science, 2018, 4, 917-928.	11.3	63
53	Highâ€Throughput Design of Biocompatible Enzymeâ€Based Hydrogel Microparticles with Autonomous Movement. Angewandte Chemie, 2018, 130, 9962-9965.	2.0	13
54	Highâ€Throughput Design of Biocompatible Enzymeâ€Based Hydrogel Microparticles with Autonomous Movement. Angewandte Chemie - International Edition, 2018, 57, 9814-9817.	13.8	69

#	Article	IF	CITATIONS
55	Continuous fabrication of polymeric vesicles and nanotubes with fluidic channels. Nanoscale, 2017, 9, 4875-4880.	5.6	11
56	Biodegradable Hybrid Stomatocyte Nanomotors for Drug Delivery. ACS Nano, 2017, 11, 1957-1963.	14.6	211
57	Redoxâ€Sensitive Stomatocyte Nanomotors: Destruction and Drug Release in the Presence of Glutathione. Angewandte Chemie - International Edition, 2017, 56, 7620-7624.	13.8	133
58	Micro/nanomotors towards in vivo application: cell, tissue and biofluid. Chemical Society Reviews, 2017, 46, 5289-5310.	38.1	271
59	Redoxâ€Sensitive Stomatocyte Nanomotors: Destruction and Drug Release in the Presence of Glutathione. Angewandte Chemie, 2017, 129, 7728-7732.	2.0	26
60	Sub-Micron Polymeric Stomatocytes as Promising Templates for Confined Crystallization and Diffraction Experiments. Small, 2017, 13, 1700642.	10.0	13
61	Self-propelled supramolecular nanomotors with temperature-responsive speed regulation. Nature Chemistry, 2017, 9, 480-486.	13.6	254
62	A peptide functionalized nanomotor as an efficient cell penetrating tool. Chemical Communications, 2017, 53, 1088-1091.	4.1	46
63	Motion Manipulation of Micro―and Nanomotors. Advanced Materials, 2017, 29, 1701970.	21.0	156
64	Demonstrating the 8 ₁ -Helicity and Nanomechanical Function of Self-Organizable Dendronized Polymethacrylates and Polyacrylates. Macromolecules, 2017, 50, 5271-5284.	4.8	32
65	Supramolecular Adaptive Nanomotors with Magnetotaxis Behavior. Advanced Materials, 2017, 29, 1604996.	21.0	81
66	Shape characterization of polymersome morphologies via light scattering techniques. Polymer, 2016, 107, 445-449.	3.8	29
67	Formation of Well-Defined, Functional Nanotubes via Osmotically Induced Shape Transformation of Biodegradable Polymersomes. Journal of the American Chemical Society, 2016, 138, 9353-9356.	13.7	105
68	Methods for production of uniform small-sized polymersome with rigid membrane. Polymer Chemistry, 2016, 7, 3977-3982.	3.9	30
69	A Compartmentalized Out-of-Equilibrium Enzymatic Reaction Network for Sustained Autonomous Movement. ACS Central Science, 2016, 2, 843-849.	11.3	133
70	Shaping polymersomes into predictable morphologies via out-of-equilibrium self-assembly. Nature Communications, 2016, 7, 12606.	12.8	127
71	Dynamic Loading and Unloading of Proteins in Polymeric Stomatocytes: Formation of an Enzyme-Loaded Supramolecular Nanomotor. ACS Nano, 2016, 10, 2652-2660.	14.6	240
72	Bioactive cell-like hybrids coassembled from (glyco)dendrimersomes with bacterial membranes. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E1134-41.	7.1	69

#	Article	IF	CITATIONS
73	A supramolecular helix that disregards chirality. Nature Chemistry, 2016, 8, 80-89.	13.6	147
74	Mimicking the Cell: Bio-Inspired Functions of Supramolecular Assemblies. Chemical Reviews, 2016, 116, 2023-2078.	47.7	254
75	Selfâ€Guided Supramolecular Cargo‣oaded Nanomotors with Chemotactic Behavior towards Cells. Angewandte Chemie - International Edition, 2015, 54, 11662-11665.	13.8	189
76	Aqueous SET-LRP catalyzed with "in situ―generated Cu(0) demonstrates surface mediated activation and bimolecular termination. Polymer Chemistry, 2015, 6, 2084-2097.	3.9	65
77	Self-organisation of dodeca-dendronized fullerene into supramolecular discs and helical columns containing a nanowire-like core. Chemical Science, 2015, 6, 3393-3401.	7.4	49
78	Vesicle budding from polymersomes templated by microfluidically prepared double emulsions. Materials Horizons, 2014, 1, 96-101.	12.2	29
79	Manipulation of micro- and nanostructure motion with magnetic fields. Soft Matter, 2014, 10, 1295-1308.	2.7	184
80	Probing morphological changes in polymersomes with magnetic birefringence. Chemical Communications, 2014, 50, 5394-5396.	4.1	33
81	Micro- and nano-motors for biomedical applications. Journal of Materials Chemistry B, 2014, 2, 2395-2408.	5.8	201
82	Polymersome magneto-valves for reversible capture and release of nanoparticles. Nature Communications, 2014, 5, 5010.	12.8	55
83	SET-LRP of 2-hydroxyethyl acrylate in protic and dipolar aprotic solvents. Polymer Chemistry, 2013, 4, 2995.	3.9	51
84	A comparative study of the SET-LRP of oligo(ethylene oxide) methyl ether acrylate in DMSO and in H2O. Polymer Chemistry, 2013, 4, 144-155.	3.9	119
85	The design and investigation of porphyrins with liquid crystal properties at room temperature. Journal of Materials Chemistry C, 2013, 1, 144-150.	5.5	12
86	Modular Synthesis of Amphiphilic Janus Glycodendrimers and Their Self-Assembly into Glycodendrimersomes and Other Complex Architectures with Bioactivity to Biomedically Relevant Lectins. Journal of the American Chemical Society, 2013, 135, 9055-9077.	13.7	261
87	Fuel concentration dependent movement of supramolecular catalytic nanomotors. Nanoscale, 2013, 5, 1315-1318.	5.6	56
88	Capacitance and optical studies of elastic and dielectric properties in an organosiloxane tetrapode exhibiting a NB phase. Journal of Chemical Physics, 2013, 138, 124904.	3.0	7
89	Entrapment of Metal Nanoparticles in Polymer Stomatocytes. Journal of the American Chemical Society, 2012, 134, 9894-9897.	13.7	50
90	Autonomous movement of platinum-loaded stomatocytes. Nature Chemistry, 2012, 4, 268-274.	13.6	519

#	Article	IF	CITATIONS
91	KINETICS OF THERMAL DEGRADATION OF SOME FERROCENE DERIVATIVES. Environmental Engineering and Management Journal, 2012, 11, 1945-1952.	0.6	2
92	129Xe and 2H nuclear magnetic resonance (NMR) of xenon and deuterated-chloroform solutes in a thermotropic biaxial nematic liquid crystal. Canadian Journal of Chemistry, 2011, 89, 1143-1149.	1.1	4
93	Nickel-Catalyzed Cross-Couplings Involving Carbonâ^'Oxygen Bonds. Chemical Reviews, 2011, 111, 1346-1416.	47.7	1,212
94	Synthesis and thermal analysis of some ferrocene derivatives. Journal of the Iranian Chemical Society, 2011, 8, 782-793.	2.2	2
95	Transfer, Amplification, and Inversion of Helical Chirality Mediated by Concerted Interactions of C ₃ -Supramolecular Dendrimers. Journal of the American Chemical Society, 2011, 133, 2311-2328.	13.7	100
96	Ferrocene derivatives thermostability prediction using neural networks and genetic algorithms. Thermochimica Acta, 2011, 521, 26-36.	2.7	12
97	Hockey Stick Liquid Crystals Based on a 2,5-Asymmetric Disubstituted [1,3,4]Oxadiazole Core. Molecular Crystals and Liquid Crystals, 2011, 537, 51-63.	0.9	11
98	Detecting columnar deformations in a supermesogenic octapode by proton NMR relaxometry. European Physical Journal E, 2010, 31, 275-283.	1.6	5
99	Neopentylglycolborylation ofortho-Substituted Aryl Halides Catalyzed by NiCl2-Based Mixed-Ligand Systems. Journal of Organic Chemistry, 2010, 75, 5438-5452.	3.2	71
100	Investigation of thermal degradation of some ferrocene liquid crystals. Thermochimica Acta, 2010, 507-508, 49-59.	2.7	26
101	Disassembly via an environmentally friendly and efficient fluorous phase constructed with dendritic architectures. Journal of Polymer Science Part A, 2010, 48, 2498-2508.	2.3	29
102	Self-Assembly of Hybrid Dendrons into Doubly Segregated Supramolecular Polyhedral Columns and Vesicles. Journal of the American Chemical Society, 2010, 132, 11288-11305.	13.7	70
103	Zero-Valent Metals Accelerate the Neopentylglycolborylation of Aryl Halides Catalyzed by NiCl ₂ -Based Mixed-Ligand Systems. Journal of Organic Chemistry, 2010, 75, 7822-7828.	3.2	61
104	Neopentylglycolborylation of Aryl Mesylates and Tosylates Catalyzed by Ni-Based Mixed-Ligand Systems Activated with Zn. Journal of the American Chemical Society, 2010, 132, 1800-1801.	13.7	148
105	Self-Assembly of Janus Dendrimers into Uniform Dendrimersomes and Other Complex Architectures. Science, 2010, 328, 1009-1014.	12.6	654
106	Neopentylglycolborylation of Aryl Chlorides Catalyzed by the Mixed Ligand System NiCl ₂ (dppp)/dppf. Organic Letters, 2009, 11, 4974-4977.	4.6	70
107	Self-Assembly of Dendronized Triphenylenes into Helical Pyramidal Columns and Chiral Spheres. Journal of the American Chemical Society, 2009, 131, 7662-7677.	13.7	169
108	Dendron-Mediated Self-Assembly, Disassembly, and Self-Organization of Complex Systems. Chemical Reviews, 2009, 109, 6275-6540.	47.7	1,131

#	Article	IF	CITATIONS
109	Predicting the Structure of Supramolecular Dendrimers via the Analysis of Libraries of AB ₃ and Constitutional Isomeric AB ₂ Biphenylpropyl Ether Self-Assembling Dendrons. Journal of the American Chemical Society, 2009, 131, 17500-17521.	13.7	165
110	Self-Assembly of Dendritic Crowns into Chiral Supramolecular Spheres. Journal of the American Chemical Society, 2009, 131, 1294-1304.	13.7	158
111	Anion-dependent micelle formation using electro-generated ferrocene surfactants. Electrochemistry Communications, 2008, 10, 1720-1723.	4.7	8
112	Two-Step, One-Pot Ni-Catalyzed Neopentylglycolborylation and Complementary Pd/Ni-Catalyzed Cross-Coupling with Aryl Halides, Mesylates, and Tosylates. Organic Letters, 2008, 10, 4879-4882.	4.6	95
113	Deuterium NMR Investigation of the Influence of Molecular Structure on the Biaxial Ordering of Organosiloxane Tetrapodes Nematic Phase. Molecular Crystals and Liquid Crystals, 2008, 495, 348/[700]-359/[711].	0.9	10
114	High-resolution calorimetric study of a liquid crystalline organo-siloxane tetrapode with a biaxial nematic phase. Physical Review E, 2008, 78, 011708.	2.1	26
115	Ferroceneâ€containing liquid crystals bearing a cholesteryl unit. Liquid Crystals, 2007, 34, 819-831.	2.2	17
116	The design and investigation of laterally functionalised oxadiazoles. Journal of Materials Chemistry, 2007, 17, 4711.	6.7	50
117	The liquid crystalline behaviour of ferrocene derivatives containing azo and imine linking groups. Liquid Crystals, 2007, 34, 775-785.	2.2	33
118	The liquid crystalline properties of some ferrocene-containing Schiff bases. Applied Organometallic Chemistry, 2007, 21, 661-669.	3.5	19
119	Completely miscible disc and rod shaped molecules in the nematic phase. Chemical Communications, 2006, , 609.	4.1	38
120	Thermotropic properties of ferrocene derivatives bearing a cholesteryl unit: structure-properties correlations. Applied Organometallic Chemistry, 2005, 19, 1022-1037.	3.5	17