
Sampa Santra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6604773/publications.pdf Version: 2024-02-01

SAMDA SANTDA

#	Article	IF	CITATIONS
1	Control of Viremia and Prevention of Clinical AIDS in Rhesus Monkeys by Cytokine-Augmented DNA Vaccination. Science, 2000, 290, 486-492.	12.6	876
2	Zika virus protection by a single low-dose nucleoside-modified mRNA vaccination. Nature, 2017, 543, 248-251.	27.8	699
3	Vaccine Induction of Antibodies against a Structurally Heterogeneous Site of Immune Pressure within HIV-1 Envelope Protein Variable Regions 1 and 2. Immunity, 2013, 38, 176-186.	14.3	374
4	D614G Spike Mutation Increases SARS CoV-2 Susceptibility to Neutralization. Cell Host and Microbe, 2021, 29, 23-31.e4.	11.0	308
5	Mosaic vaccines elicit CD8+ T lymphocyte responses that confer enhanced immune coverage of diverse HIV strains in monkeys. Nature Medicine, 2010, 16, 324-328.	30.7	211
6	Reduction of Simian-Human Immunodeficiency Virus 89.6P Viremia in Rhesus Monkeys by Recombinant Modified Vaccinia Virus Ankara Vaccination. Journal of Virology, 2001, 75, 5151-5158.	3.4	186
7	Envelope residue 375 substitutions in simian–human immunodeficiency viruses enhance CD4 binding and replication in rhesus macaques. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E3413-22.	7.1	170
8	Human Non-neutralizing HIV-1 Envelope Monoclonal Antibodies Limit the Number of Founder Viruses during SHIV Mucosal Infection in Rhesus Macaques. PLoS Pathogens, 2015, 11, e1005042.	4.7	145
9	Pentavalent HIV-1 vaccine protects against simian-human immunodeficiency virus challenge. Nature Communications, 2017, 8, 15711.	12.8	137
10	Replication-Defective Adenovirus Serotype 5 Vectors Elicit Durable Cellular and Humoral Immune Responses in Nonhuman Primates. Journal of Virology, 2005, 79, 6516-6522.	3.4	136
11	Antigenicity and Immunogenicity of RV144 Vaccine AIDSVAX Clade E Envelope Immunogen Is Enhanced by a gp120 N-Terminal Deletion. Journal of Virology, 2013, 87, 1554-1568.	3.4	97
12	Vaccine Induction of Heterologous Tier 2 HIV-1 Neutralizing Antibodies in Animal Models. Cell Reports, 2017, 21, 3681-3690.	6.4	97
13	Initiation of immune tolerance–controlled HIV gp41 neutralizing B cell lineages. Science Translational Medicine, 2016, 8, 336ra62.	12.4	86
14	Mimicry of an HIV broadly neutralizing antibody epitope with a synthetic glycopeptide. Science Translational Medicine, 2017, 9, .	12.4	81
15	Initiation of HIV neutralizing B cell lineages with sequential envelope immunizations. Nature Communications, 2017, 8, 1732.	12.8	76
16	A centralized gene-based HIV-1 vaccine elicits broad cross-clade cellular immune responses in rhesus monkeys. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 10489-10494.	7.1	75
17	Vaccine Elicitation of High Mannose-Dependent Neutralizing Antibodies against the V3-Glycan Broadly Neutralizing Epitope in Nonhuman Primates. Cell Reports, 2017, 18, 2175-2188.	6.4	69
18	Antibody Light-Chain-Restricted Recognition of the Site of Immune Pressure in the RV144 HIV-1 Vaccine Trial Is Phylogenetically Conserved. Immunity, 2014, 41, 909-918.	14.3	65

SAMPA SANTRA

#	Article	IF	CITATIONS
19	Recombinant poxvirus boosting of DNA-primed rhesus monkeys augments peak but not memory T lymphocyte responses. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 11088-11093.	7.1	58
20	Neutralization Takes Precedence Over IgG or IgA Isotype-related Functions in Mucosal HIV-1 Antibody-mediated Protection. EBioMedicine, 2016, 14, 97-111.	6.1	47
21	Breadth of cellular and humoral immune responses elicited in rhesus monkeys by multi-valent mosaic and consensus immunogens. Virology, 2012, 428, 121-127.	2.4	46
22	A CD4-mimetic compound enhances vaccine efficacy against stringent immunodeficiency virus challenge. Nature Communications, 2018, 9, 2363.	12.8	46
23	Lipid nanoparticle encapsulated nucleoside-modified mRNA vaccines elicit polyfunctional HIV-1 antibodies comparable to proteins in nonhuman primates. Npj Vaccines, 2021, 6, 50.	6.0	46
24	Structural Constraints of Vaccine-Induced Tier-2 Autologous HIV Neutralizing Antibodies Targeting the Receptor-Binding Site. Cell Reports, 2016, 14, 43-54.	6.4	45
25	Heterologous prime/boost immunizations of rhesus monkeys using chimpanzee adenovirus vectors. Vaccine, 2009, 27, 5837-5845.	3.8	44
26	Immunization with an SIV-based IDLV Expressing HIV-1 Env 1086 Clade C Elicits Durable Humoral and Cellular Responses in Rhesus Macaques. Molecular Therapy, 2016, 24, 2021-2032.	8.2	41
27	Comparison of Immunogenicity in Rhesus Macaques of Transmitted-Founder, HIV-1 Group M Consensus, and Trivalent Mosaic Envelope Vaccines Formulated as a DNA Prime, NYVAC, and Envelope Protein Boost. Journal of Virology, 2015, 89, 6462-6480.	3.4	40
28	Recombinant Canarypox Vaccine-Elicited CTL Specific for Dominant and Subdominant Simian Immunodeficiency Virus Epitopes in Rhesus Monkeys. Journal of Immunology, 2002, 168, 1847-1853.	0.8	38
29	Heterologous Prime/Boost Immunization of Rhesus Monkeys by Using Diverse Poxvirus Vectors. Journal of Virology, 2007, 81, 8563-8570.	3.4	38
30	Antibodies Elicited by Multiple Envelope Glycoprotein Immunogens in Primates Neutralize Primary Human Immunodeficiency Viruses (HIV-1) Sensitized by CD4-Mimetic Compounds. Journal of Virology, 2016, 90, 5031-5046.	3.4	38
31	Amino Acid Changes in the HIV-1 gp41 Membrane Proximal Region Control Virus Neutralization Sensitivity. EBioMedicine, 2016, 12, 196-207.	6.1	34
32	B7 co-stimulatory requirements differ for induction of immune responses by DNA, protein and recombinant pox virus vaccination. European Journal of Immunology, 2000, 30, 2650-2659.	2.9	28
33	Immune checkpoint modulation enhances HIV-1 antibody induction. Nature Communications, 2020, 11, 948.	12.8	27
34	IDLV-HIV-1 Env vaccination in non-human primates induces affinity maturation of antigen-specific memory B cells. Communications Biology, 2018, 1, 134.	4.4	26
35	Infection of monkeys by simian-human immunodeficiency viruses with transmitted/founder clade C HIV-1 envelopes. Virology, 2015, 475, 37-45.	2.4	25
36	Prior Vaccination Increases the Epitopic Breadth of the Cytotoxic T-Lymphocyte Response That Evolves in Rhesus Monkeys following a Simian-Human Immunodeficiency Virus Infection. Journal of Virology, 2002, 76, 6376-6381.	3.4	21

SAMPA SANTRA

#	Article	IF	CITATIONS
37	Neonatal Rhesus Macaques Have Distinct Immune Cell Transcriptional Profiles following HIV Envelope Immunization. Cell Reports, 2020, 30, 1553-1569.e6.	6.4	21
38	The transcription factor CREB1 is a mechanistic driver of immunogenicity and reduced HIV-1 acquisition following ALVAC vaccination. Nature Immunology, 2021, 22, 1294-1305.	14.5	20
39	Strong, but Age-Dependent, Protection Elicited by a Deoxyribonucleic Acid/Modified Vaccinia Ankara Simian Immunodeficiency Virus Vaccine. Open Forum Infectious Diseases, 2016, 3, ofw034.	0.9	15
40	Strong T _H 1-biased CD4 T cell responses are associated with diminished SIV vaccine efficacy. Science Translational Medicine, 2019, 11, .	12.4	14
41	Engagement of monocytes, NK cells, and CD4+ Th1 cells by ALVAC-SIV vaccination results in a decreased risk of SIVmac251 vaginal acquisition. PLoS Pathogens, 2020, 16, e1008377.	4.7	14
42	Therapeutic vaccination with IDLV-SIV-Gag results in durable viremia control in chronically SHIV-infected macaques. Npj Vaccines, 2020, 5, 36.	6.0	12
43	Immunogenicity, safety, and efficacy of sequential immunizations with an SIV-based IDLV expressing CH505 Envs. Npj Vaccines, 2020, 5, 107.	6.0	11
44	Immunogenicity of NYVAC Prime-Protein Boost Human Immunodeficiency Virus Type 1 Envelope Vaccination and Simian-Human Immunodeficiency Virus Challenge of Nonhuman Primates. Journal of Virology, 2018, 92, .	3.4	10
45	Tissue memory B cell repertoire analysis after ALVAC/AIDSVAX B/E gp120 immunization of rhesus macaques. JCl Insight, 2016, 1, e88522.	5.0	10
46	HIV-1 Envelope Mimicry of Host Enzyme Kynureninase Does Not Disrupt Tryptophan Metabolism. Journal of Immunology, 2016, 197, 4663-4673.	0.8	6
47	Systematic Assessment of Antiviral Potency, Breadth, and Synergy of Triple Broadly Neutralizing Antibody Combinations against Simian-Human Immunodeficiency Viruses. Journal of Virology, 2021, 95, .	3.4	6
48	Recombinant MVA-prime elicits neutralizing antibody responses by inducing antigen-specific B cells in the germinal center. Npj Vaccines, 2021, 6, 15.	6.0	5
49	Cross-reactive potential of human T-lymphocyte responses in HIV-1 infection. Vaccine, 2014, 32, 3995-4000.	3.8	4
50	Structural and genetic convergence of HIV-1 neutralizing antibodies in vaccinated non-human primates. PLoS Pathogens, 2021, 17, e1009624.	4.7	2