
Huaimin Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6604711/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Intracellular Condensates of Oligopeptide for Targeting Lysosome and Addressing Multiple Drug Resistance of Cancer. Advanced Materials, 2022, 34, e2104704.	21.0	47
2	Intracellular Condensates of Oligopeptide for Targeting Lysosome and Addressing Multiple Drug Resistance of Cancer (Adv. Mater. 1/2022). Advanced Materials, 2022, 34, 2270005.	21.0	4
3	Molecular Engineering of Peptide–Drug Conjugates for Therapeutics. Pharmaceutics, 2022, 14, 212.	4.5	11
4	Controlling supramolecular filament chirality of hydrogel by co-assembly of enantiomeric aromatic peptides. Journal of Nanobiotechnology, 2022, 20, 77.	9.1	7
5	Biomimetic Heterodimerization of Tetrapeptides to Generate Liquid Crystalline Hydrogel in A Two-Component System. ACS Nano, 2022, 16, 4126-4138.	14.6	14
6	Intramitochondrial co-assembly between ATP and nucleopeptides induces cancer cell apoptosis. Chemical Science, 2022, 13, 6197-6204.	7.4	9
7	Tandem molecular self-assembly for selective lung cancer therapy with an increase in efficiency by two orders of magnitude. Nanoscale, 2021, 13, 10891-10897.	5.6	7
8	Supramolecular Selfâ€Assemblyâ€Facilitated Aggregation of Tumorâ€Specific Transmembrane Receptors for Signaling Activation and Converting Immunologically Cold to Hot Tumors. Advanced Materials, 2021, 33, e2008518.	21.0	66
9	In Situ Construction of Functional Assemblies in Living Cells for Cancer Therapy. Advanced Healthcare Materials, 2021, 10, 2100381.	7.6	4
10	Structureâ€Based Programming of Supramolecular Assemblies in Living Cells for Selective Cancer Cell Inhibition. Angewandte Chemie, 2021, 133, 21978-21987.	2.0	2
11	Structureâ€Based Programming of Supramolecular Assemblies in Living Cells for Selective Cancer Cell Inhibition. Angewandte Chemie - International Edition, 2021, 60, 21807-21816.	13.8	33
12	Frontispiz: Structureâ€Based Programming of Supramolecular Assemblies in Living Cells for Selective Cancer Cell Inhibition. Angewandte Chemie, 2021, 133, .	2.0	0
13	Spatiotemporal Control over Chemical Assembly in Living Cells by Integration of Acidâ€Catalyzed Hydrolysis and Enzymatic Reactions. Angewandte Chemie - International Edition, 2021, 60, 23797-23804.	13.8	26
14	Frontispiece: Structureâ€Based Programming of Supramolecular Assemblies in Living Cells for Selective Cancer Cell Inhibition. Angewandte Chemie - International Edition, 2021, 60, .	13.8	0
15	Spatiotemporal Control over Chemical Assembly in Living Cells by Integration of Acid Catalyzed Hydrolysis and Enzymatic Reaction. Angewandte Chemie, 2021, 133, 23990.	2.0	2
16	Heterotypic Supramolecular Hydrogels Formed by Noncovalent Interactions in Inflammasomes. Molecules, 2021, 26, 77.	3.8	5
17	Instructedâ€assembly of small peptides inhibits drugâ€resistant prostate cancer cells. Peptide Science, 2020, 112, e24123.	1.8	14
18	Artificial Intracellular Filaments. Cell Reports Physical Science, 2020, 1, 100085.	5.6	56

#	Article	IF	CITATIONS
19	Optically Active Flavaglines-Inspired Molecules by a Palladium-Catalyzed Decarboxylative Dearomative Asymmetric Allylic Alkylation. Journal of the American Chemical Society, 2020, 142, 12039-12045.	13.7	23
20	Enzyme-instructed assembly of a cholesterol conjugate promotes pro-inflammatory macrophages and induces apoptosis of cancer cells. Biomaterials Science, 2020, 8, 2007-2017.	5.4	10
21	Enzyme-Instructed Peptide Assemblies Selectively Inhibit Bone Tumors. CheM, 2019, 5, 2442-2449.	11.7	118
22	Assemblies of <scp>d</scp> -Peptides for Targeting Cell Nucleolus. Bioconjugate Chemistry, 2019, 30, 2528-2532.	3.6	32
23	Instructed Assembly as Contextâ€Dependent Signaling for the Death and Morphogenesis of Cells. Angewandte Chemie, 2019, 131, 5623-5627.	2.0	7
24	Supramolecular Assemblies of Peptides or Nucleopeptides for Gene Delivery. Theranostics, 2019, 9, 3213-3222.	10.0	46
25	Intercellular Instructed-Assembly Mimics Protein Dynamics To Induce Cell Spheroids. Journal of the American Chemical Society, 2019, 141, 7271-7274.	13.7	66
26	Assemblies of Peptides in a Complex Environment and their Applications. Angewandte Chemie - International Edition, 2019, 58, 10423-10432.	13.8	99
27	Assemblies of Peptides in a Complex Environment and their Applications. Angewandte Chemie, 2019, 131, 10532-10541.	2.0	24
28	Dynamic Continuum of Molecular Assemblies for Controlling Cell Fates. ChemBioChem, 2019, 20, 2442-2446.	2.6	6
29	Instructed Assembly as Contextâ€Dependent Signaling for the Death and Morphogenesis of Cells. Angewandte Chemie - International Edition, 2019, 58, 5567-5571.	13.8	45
30	Unraveling the Cellular Mechanism of Assembling Cholesterols for Selective Cancer Cell Death. Molecular Cancer Research, 2019, 17, 907-917.	3.4	20
31	Active Probes for Imaging Membrane Dynamics of Live Cells with High Spatial and Temporal Resolution over Extended Time Scales and Areas. Journal of the American Chemical Society, 2018, 140, 3505-3509.	13.7	100
32	Nucleopeptide Assemblies Selectively Sequester ATP in Cancer Cells to Increase the Efficacy of Doxorubicin. Angewandte Chemie - International Edition, 2018, 57, 4931-4935.	13.8	71
33	Nucleopeptide Assemblies Selectively Sequester ATP in Cancer Cells to Increase the Efficacy of Doxorubicin. Angewandte Chemie, 2018, 130, 5025-5029.	2.0	14
34	Enzymatic Cleavage of Branched Peptides for Targeting Mitochondria. Journal of the American Chemical Society, 2018, 140, 1215-1218.	13.7	149
35	Instructed Assembly of Peptides for Intracellular Enzyme Sequestration. Journal of the American Chemical Society, 2018, 140, 16433-16437.	13.7	66
36	Enzymatic Assemblies Disrupt the Membrane and Target Endoplasmic Reticulum for Selective Cancer Cell Death. Journal of the American Chemical Society, 2018, 140, 9566-9573.	13.7	174

#	Article	IF	CITATIONS
37	Branched peptides for enzymatic supramolecular hydrogelation. Chemical Communications, 2018, 54, 86-89.	4.1	36
38	D-amino acid-containing supramolecular nanofibers for potential cancer therapeutics. Advanced Drug Delivery Reviews, 2017, 110-111, 102-111.	13.7	74
39	Hyperâ€Crosslinkers Lead to Temperature―and pHâ€Responsive Polymeric Nanogels with Unusual Volume Change. Angewandte Chemie - International Edition, 2017, 56, 2623-2627.	13.8	24
40	Hyperâ€Crosslinkers Lead to Temperature―and pHâ€Responsive Polymeric Nanogels with Unusual Volume Change. Angewandte Chemie, 2017, 129, 2667-2671.	2.0	3
41	Selectively Inducing Cancer Cell Death by Intracellular Enzymeâ€Instructed Selfâ€Assembly (EISA) of Dipeptide Derivatives. Advanced Healthcare Materials, 2017, 6, 1601400.	7.6	56
42	Enzyme-Instructed Assembly and Disassembly Processes for Targeting Downregulation in Cancer Cells. Journal of the American Chemical Society, 2017, 139, 3950-3953.	13.7	122
43	Instant Hydrogelation Inspired by Inflammasomes. Angewandte Chemie - International Edition, 2017, 56, 7579-7583.	13.8	22
44	Instant Hydrogelation Inspired by Inflammasomes. Angewandte Chemie, 2017, 129, 7687-7691.	2.0	7
45	Bioinspired assembly of small molecules in cell milieu. Chemical Society Reviews, 2017, 46, 2421-2436.	38.1	188
46	Self-Assembling Ability Determines the Activity of Enzyme-Instructed Self-Assembly for Inhibiting Cancer Cells. Journal of the American Chemical Society, 2017, 139, 15377-15384.	13.7	108
47	Supramolecular catalysis and dynamic assemblies for medicine. Chemical Society Reviews, 2017, 46, 6470-6479.	38.1	137
48	An inâ€situ Dynamic Continuum of Supramolecular Phosphoglycopeptides Enables Formation of 3D Cell Spheroids. Angewandte Chemie - International Edition, 2017, 56, 16297-16301.	13.8	50
49	A Powerful CD8 ⁺ Tâ€Cell Stimulating Dâ€Tetraâ€Peptide Hydrogel as a Very Promising Vaccine Adjuvant. Advanced Materials, 2017, 29, 1601776.	21.0	198
50	An inâ€situ Dynamic Continuum of Supramolecular Phosphoglycopeptides Enables Formation of 3D Cell Spheroids. Angewandte Chemie, 2017, 129, 16515-16519.	2.0	11
51	Minimal C-terminal modification boosts peptide self-assembling ability for necroptosis of cancer cells. Chemical Communications, 2016, 52, 6332-6335.	4.1	30
52	Enzyme-Regulated Supramolecular Assemblies of Cholesterol Conjugates against Drug-Resistant Ovarian Cancer Cells. Journal of the American Chemical Society, 2016, 138, 10758-10761.	13.7	102
53	Integrating Enzymatic Self-Assembly and Mitochondria Targeting for Selectively Killing Cancer Cells without Acquired Drug Resistance. Journal of the American Chemical Society, 2016, 138, 16046-16055.	13.7	254
54	Enzymeâ€Catalyzed Formation of Supramolecular Hydrogels as Promising Vaccine Adjuvants. Advanced Functional Materials, 2016, 26, 1822-1829.	14.9	163

#	Article	IF	CITATIONS
55	Peptide-Induced AIEgen Self-Assembly: A New Strategy to Realize Highly Sensitive Fluorescent Light-Up Probes. Analytical Chemistry, 2016, 88, 3872-3878.	6.5	97
56	In situ formation of peptidic nanofibers can fundamentally optimize the quality of immune responses against HIV vaccine. Nanoscale Horizons, 2016, 1, 135-143.	8.0	24
57	Biocompatible fluorescent supramolecular nanofibrous hydrogel for long-term cell tracking and tumor imaging applications. Scientific Reports, 2015, 5, 16680.	3.3	30
58	Enzymeâ€Instructed Intracellular Molecular Selfâ€Assembly to Boost Activity of Cisplatin against Drugâ€Resistant Ovarian Cancer Cells. Angewandte Chemie - International Edition, 2015, 54, 13307-13311.	13.8	158
59	When Molecular Probes Meet Selfâ€Assembly: An Enhanced Quenching Effect. Angewandte Chemie - International Edition, 2015, 54, 4823-4827.	13.8	112
60	Drug delivery with nanospherical supramolecular cell penetrating peptide–taxol conjugates containing a high drug loading. Journal of Colloid and Interface Science, 2015, 453, 15-20.	9.4	54
61	Supramolecular nanofibers of self-assembling peptides and proteins for protein delivery. Chemical Communications, 2015, 51, 14239-14242.	4.1	36
62	Rational design of a photo-responsive UVR8-derived protein and a self-assembling peptide–protein conjugate for responsive hydrogel formation. Nanoscale, 2015, 7, 16666-16670.	5.6	58
63	Glutathione-Triggered Formation of a Fmoc-Protected Short Peptide-Based Supramolecular Hydrogel. PLoS ONE, 2014, 9, e106968.	2.5	18
64	A Peptide-Based Nanofibrous Hydrogel as a Promising DNA Nanovector for Optimizing the Efficacy of HIV Vaccine. Nano Letters, 2014, 14, 1439-1445.	9.1	157
65	Interfacial self-assembly leads to formation of fluorescent nanoparticles for simultaneous bacterial detection and inhibition. Chemical Communications, 2014, 50, 3473-3475.	4.1	41
66	Environment-Sensitive Fluorescent Supramolecular Nanofibers for Imaging Applications. Analytical Chemistry, 2014, 86, 2193-2199.	6.5	61
67	Self-Assembly-Induced Far-Red/Near-Infrared Fluorescence Light-Up for Detecting and Visualizing Specific Protein–Peptide Interactions. ACS Nano, 2014, 8, 1475-1484.	14.6	79
68	Cellular Membrane Enrichment of Self-Assembling <scp>d</scp> -Peptides for Cell Surface Engineering. ACS Applied Materials & Interfaces, 2014, 6, 9815-9821.	8.0	23
69	Multifunctional biohybrid hydrogels for cell culture and controlled drug release. Chemical Communications, 2013, 49, 7448.	4.1	38
70	Recombinant proteins as cross-linkers for hydrogelations. Chemical Society Reviews, 2013, 42, 891-901.	38.1	50
71	Dephosphorylation of <scp>d</scp> -Peptide Derivatives to Form Biofunctional, Supramolecular Nanofibers/Hydrogels and Their Potential Applications for Intracellular Imaging and Intratumoral Chemotherapy. Journal of the American Chemical Society, 2013, 135, 9907-9914.	13.7	226
72	Janus nanogels of PEGylated Taxol and PLGA–PEG–PLGA copolymer for cancer therapy. Nanoscale, 2013, 5, 9902.	5.6	30

#	Article	IF	CITATIONS
73	Molecular Hydrogels with Esteraseâ€like Activity. Chinese Journal of Chemistry, 2013, 31, 494-500.	4.9	14
74	Molecular hydrogelators consist of Taxol and short peptides/amino acids. Journal of Materials Chemistry, 2012, 22, 16933.	6.7	30
75	Short-peptide-based molecular hydrogels: novel gelation strategies and applications for tissue engineering and drug delivery. Nanoscale, 2012, 4, 5259.	5.6	121
76	Molecular hydrogels of hydrophobic compounds: a novel self-delivery system for anti-cancer drugs. Soft Matter, 2012, 8, 2344-2347.	2.7	77
77	BSA-stabilized molecular hydrogels of a hydrophobic compound. Nanoscale, 2012, 4, 3047.	5.6	24
78	Precursorâ€involved and Conversion Rateâ€controlled Selfâ€assembly of a 'Super Gelator' in Thixotropic Hydrogels for Drug Delivery. Chinese Journal of Chemistry, 2012, 30, 1781-1787.	4.9	9
79	Conjugation of two complementary anti-cancer drugs confers molecular hydrogels as a co-delivery system. Chemical Communications, 2012, 48, 395-397.	4.1	113
80	Controlling peptidebased hydrogelation. Materials Today, 2012, 15, 500-507.	14.2	72
81	Rational Design of a Tetrameric Protein to Enhance Interactions between Selfâ€Assembled Fibers Gives Molecular Hydrogels. Angewandte Chemie - International Edition, 2012, 51, 4388-4392.	13.8	122
82	The inhibition of tumor growth and metastasis by self-assembled nanofibers of taxol. Biomaterials, 2012, 33, 5848-5853.	11.4	162
83	Anti-degradation of a recombinant complex protein by incoporation in small molecular hydrogels. Chemical Communications, 2011, 47, 955-957.	4.1	38
84	A thixotropic molecular hydrogel selectively enhances Flk1 expression in differentiated murine embryonic stem cells. Soft Matter, 2011, 7, 5430.	2.7	26
85	Self-assembled nanospheres as a novel delivery system for taxol: a molecular hydrogel with nanosphere morphology. Chemical Communications, 2011, 47, 4439.	4.1	98
86	A structure–gelation ability study in a short peptide-based â€~Super Hydrogelator' system. Soft Matter, 2011, 7, 3897.	2.7	77
87	Highly stable surface modifications of poly(3-caprolactone) (PCL) films by molecular self-assembly to promote cells adhesion and proliferation. Chemical Communications, 2011, 47, 8901.	4.1	39
88	A saccharide-based supramolecular hydrogel for cell culture. Carbohydrate Research, 2011, 346, 1013-1017.	2.3	45
89	A hybrid hydrogel for efficient removal of methyl violet from aqueous solutions. Colloids and Surfaces B: Biointerfaces, 2010, 80, 155-160.	5.0	42
90	Enzyme-triggered self-assembly of a small molecule: a supramolecular hydrogel with leaf-like structures and an ultra-low minimum gelation concentration. Nanotechnology, 2010, 21, 225606.	2.6	46

#	Article	IF	CITATIONS
91	Enzyme-assisted formation of nanosphere: a potential carrier for hydrophobic compounds. Nanotechnology, 2010, 21, 155602.	2.6	18
92	Supramolecular hydrogels inspired by collagen for tissue engineering. Organic and Biomolecular Chemistry, 2010, 8, 3267.	2.8	62
93	Enzyme Promotes the Hydrogelation from a Hydrophobic Small Molecule. Journal of the American Chemical Society, 2009, 131, 11286-11287.	13.7	170