Mariana Barbosa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6604087/publications.pdf

Version: 2024-02-01

567281 940533 17 744 15 16 citations h-index g-index papers 17 17 17 1121 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Recent Advances in Research on Polyphenols: Effects on Microbiota, Metabolism, and Health. Molecular Nutrition and Food Research, 2022, 66, e2100670.	3.3	48
2	Adding value to marine invaders by exploring the potential of Sargassum muticum (Yendo) Fensholt phlorotannin extract on targets underlying metabolic changes in diabetes. Algal Research, 2021, 59, 102455.	4.6	8
3	Fatty acid patterns of the kelps Saccharina latissima, Saccorhiza polyschides and Laminaria ochroleuca: Influence of changing environmental conditions. Arabian Journal of Chemistry, 2020, 13, 45-58.	4.9	29
4	Polyphenols from Brown Seaweeds (Ochrophyta, Phaeophyceae): Phlorotannins in the Pursuit of Natural Alternatives to Tackle Neurodegeneration. Marine Drugs, 2020, 18, 654.	4.6	17
5	In vitro multifunctionality of phlorotannin extracts from edible Fucus species on targets underpinning neurodegeneration. Food Chemistry, 2020, 333, 127456.	8.2	26
6	Phlorotannins from Fucales: potential to control hyperglycemia and diabetes-related vascular complications. Journal of Applied Phycology, 2019, 31, 3143-3152.	2.8	20
7	Bioprospecting of brown seaweeds for biotechnological applications: Phlorotannin actions in inflammation and allergy network. Trends in Food Science and Technology, 2019, 86, 153-171.	15.1	39
8	Chemical profiling of edible seaweed (Ochrophyta) extracts and assessment of their in vitro effects on cell-free enzyme systems and on the viability of glutamate-injured SH-SY5Y cells. Food and Chemical Toxicology, 2018, 116, 196-206.	3.6	18
9	Profiling phlorotannins from Fucus spp. of the Northern Portuguese coastline: Chemical approach by HPLC-DAD-ESI/MS and UPLC-ESI-QTOF/MS. Algal Research, 2018, 29, 113-120.	4.6	63
10	Edible seaweeds' phlorotannins in allergy: A natural multi-target approach. Food Chemistry, 2018, 265, 233-241.	8.2	26
11	Phlorotannin extracts from Fucales: Marine polyphenols as bioregulators engaged in inflammation-related mediators and enzymes. Algal Research, 2017, 28, 1-8.	4.6	41
12	Ethnopharmacological use of Cymbopogon citratus (DC.) Stapf and Cymbopogon schoenanthus (L.) Spreng.: Anti-inflammatory potential of phenol-rich extracts. Porto Biomedical Journal, 2017, 2, 216-217.	1.0	4
13	Biologically Active Oxylipins from Enzymatic and Nonenzymatic Routes in Macroalgae. Marine Drugs, 2016, 14, 23.	4.6	53
14	The pigments of kelps (Ochrophyta) as part of the flexible response to highly variable marine environments. Journal of Applied Phycology, 2016, 28, 3689-3696.	2.8	41
15	Nonenzymatic α-Linolenic Acid Derivatives from the Sea: Macroalgae as Novel Sources of Phytoprostanes. Journal of Agricultural and Food Chemistry, 2015, 63, 6466-6474.	5 . 2	40
16	Bioactive Compounds from Macroalgae in the New Millennium: Implications for Neurodegenerative Diseases. Marine Drugs, 2014, 12, 4934-4972.	4.6	123
17	Valuable compounds in macroalgae extracts. Food Chemistry, 2013, 138, 1819-1828.	8.2	148