List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6603969/publications.pdf Version: 2024-02-01

Ιομνι Ηλρτε

#	Article	IF	CITATIONS
1	Winters are changing: snow effects on Arctic and alpine tundra ecosystems. Arctic Science, 2022, 8, 572-608.	0.9	43
2	Land use change through the lens of macroecology: insights from Azorean arthropods and the maximum entropy theory of ecology. Ecography, 2022, 2022, .	2.1	6
3	The Species–Area Relationship: Idiosyncratic or Produced by â€~Laws Acting around Us'?. , 2021, , 227-258.		0
4	DynaMETE: a hybrid MaxEntâ€plusâ€mechanism theory of dynamic macroecology. Ecology Letters, 2021, 24, 935-949.	3.0	13
5	Relating the Strength of Density Dependence and the Spatial Distribution of Individuals. Frontiers in Ecology and Evolution, 2021, 9, .	1.1	4
6	Shifting macroecological patterns and static theory failure in a stressed alpine plant community. Ecosphere, 2021, 12, e03548.	1.0	6
7	Underestimating the Challenges of Avoiding a Ghastly Future. Frontiers in Conservation Science, 2021, 1, .	0.9	277
8	Response: Commentary: Underestimating the Challenges of Avoiding a Ghastly Future. Frontiers in Conservation Science, 2021, 2, .	0.9	3
9	Disturbance macroecology: a comparative study of community structure metrics in a highâ€severity disturbance regime. Ecosphere, 2020, 11, e03022.	1.0	21
10	Reflections on 27 years of manipulated ecosystem warming in a subalpine meadow. , 2019, , 1-27.		3
11	Climate warming drives local extinction: Evidence from observation and experimentation. Science Advances, 2018, 4, eaaq1819.	4.7	74
12	The Phenology of Wilderness Use: Backcountry Recreation in a Changing Climate. Weather, Climate, and Society, 2018, 10, 209-223.	0.5	2
13	Upscaling biodiversity: estimating the species–area relationship from small samples. Ecological Monographs, 2018, 88, 170-187.	2.4	49
14	Building up biogeography: Pattern to process. Journal of Biogeography, 2018, 45, 1223-1230.	1.4	25
15	A method of alternating characteristics with application to advection-dominated environmental systems. Computational Geosciences, 2018, 22, 851-865.	1.2	3
16	Pessimism on the Food Front. Sustainability, 2018, 10, 1120.	1.6	3
17	BioTIME: A database of biodiversity time series for the Anthropocene. Global Ecology and Biogeography, 2018, 27, 760-786.	2.7	289
18	Maximum Entropy and Theory Construction: A Reply to Favretti. Entropy, 2018, 20, 285.	1.1	4

#	Article	IF	CITATIONS
19	Microbial community-level regulation explains soil carbon responses to long-term litter manipulations. Nature Communications, 2017, 8, 1223.	5.8	99
20	Metabolic partitioning across individuals in ecological communities. Global Ecology and Biogeography, 2017, 26, 993-997.	2.7	14
21	Consumptionâ€Based Conservation Targeting: Linking Biodiversity Loss to Upstream Demand through a Global Wildlife Footprint. Conservation Letters, 2017, 10, 531-538.	2.8	38
22	Temperature response of soil respiration largely unaltered with experimental warming. Proceedings of the United States of America, 2016, 113, 13797-13802.	3.3	308
23	Integrating macroecological metrics and community taxonomic structure. Ecology Letters, 2015, 18, 1068-1077.	3.0	20
24	Inferring Regional-Scale Species Diversity from Small-Plot Censuses. PLoS ONE, 2015, 10, e0117527.	1.1	24
25	Food security requires a new revolution. International Journal of Environmental Studies, 2015, 72, 908-920.	0.7	26
26	Convergent ecosystem responses to 23â€year ambient and manipulated warming link advancing snowmelt and shrub encroachment to transient and longâ€term climate–soil carbon feedback. Global Change Biology, 2015, 21, 2349-2356.	4.2	83
27	Predicting extinction debt from community patterns. Ecology, 2015, 96, 2127-2136.	1.5	25
28	Population dynamics and competitive outcome derive from resource allocation statistics: The governing influence of the distinguishability of individuals. Theoretical Population Biology, 2015, 105, 53-63.	0.5	7
29	On the Importance of First Principles in Ecological Theory Development. BioScience, 2015, 65, 342-343.	2.2	11
30	Scale collapse and the emergence of the power law species–area relationship. Global Ecology and Biogeography, 2015, 24, 883-895.	2.7	25
31	Biophysical limits, women's rights and the climate encyclical. Nature Climate Change, 2015, 5, 904-905.	8.1	9
32	To feed the world in 2050 will require a global revolution. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 14743-14744.	3.3	126
33	Beyond the species–area relationship: improving macroecological extinction estimates. Methods in Ecology and Evolution, 2014, 5, 1-8.	2.2	31
34	Gastrointestinal Dysbiosis. Evolution, Medicine and Public Health, 2014, 2014, 163-163.	1.1	6
35	Ecology must seek universal principles. Nature, 2014, 508, 458-458.	13.7	3
36	Responses of highâ€altitude graminoids and soil fungi to 20 years of experimental warming. Ecology, 2014, 95, 1918-1928.	1.5	75

#	Article	IF	CITATIONS
37	On Theory in Ecology. BioScience, 2014, 64, 701-710.	2.2	195
38	Empirical tests of within- and across-species energetics in a diverse plant community. Ecology, 2014, 95, 2815-2825.	1.5	25
39	Maximum information entropy: a foundation for ecological theory. Trends in Ecology and Evolution, 2014, 29, 384-389.	4.2	170
40	Changes in ant community composition caused by 20 years of experimental warming vs. 13 years of natural climate shift. Ecosphere, 2014, 5, 1-17.	1.0	25
41	Taxon Categories and the Universal Species-Area Relationship. American Naturalist, 2013, 181, 282-287.	1.0	17
42	Persistence of soil organic matter in eroding versus depositional landform positions. Journal of Geophysical Research, 2012, 117, .	3.3	138
43	Carbon Cycle Uncertainty Increases Climate Change Risks and Mitigation Challenges. Journal of Climate, 2012, 25, 7660-7668.	1.2	16
44	Flowering in the greenhouse. Nature, 2012, 485, 448-449.	13.7	10
45	Approaching a state shift in Earth's biosphere. Nature, 2012, 486, 52-58.	13.7	1,518
46	Plot-scale evidence of tundra vegetation change and links to recent summer warming. Nature Climate Change, 2012, 2, 453-457.	8.1	745
47	Global assessment of experimental climate warming on tundra vegetation: heterogeneity over space and time. Ecology Letters, 2012, 15, 164-175.	3.0	764
48	The shape of a species' spatial abundance distribution. Global Ecology and Biogeography, 2012, 21, 1167-1178.	2.7	11
49	The Use and Misuse of Species-Area Relationships in Predicting Climate-Driven Extinction. , 2012, , 73-86.		8
50	Hubbell's local abundance distribution: insights from a simple colonization rule. Oikos, 2010, 119, 379-383.	1.2	8
51	Biodiversity scales from plots to biomes with a universal species–area curve. Ecology Letters, 2009, 12, 789-797.	3.0	172
52	Improved abundance prediction from presence–absence data. Global Ecology and Biogeography, 2009, 18, 1-10.	2.7	37
53	Decline in Medicinal and Forage Species with Warming is Mediated by Plant Traits on the Tibetan Plateau. Ecosystems, 2008, 11, 775-789.	1.6	85
54	MAXIMUM ENTROPY AND THE STATE-VARIABLE APPROACH TO MACROECOLOGY. Ecology, 2008, 89, 2700-2711.	1.5	193

#	Article	IF	CITATIONS
55	Incipient criticality in ecological communities. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 18714-18717.	3.3	13
56	Linking soil organic matter dynamics and erosionâ€induced terrestrial carbon sequestration at different landform positions. Journal of Geophysical Research, 2008, 113, .	3.3	126
57	Kent State and Bakersfield. Visual Communication Quarterly, 2008, 15, 266-271.	0.2	0
58	Soil Erosion: Data Say C Sink. Science, 2008, 320, 178-179.	6.0	58
59	The debt of nations and the distribution of ecological impacts from human activities. Proceedings of the United States of America, 2008, 105, 1768-1773.	3.3	165
60	IMPACT OF CURVE CONSTRUCTION AND COMMUNITY DYNAMICS ON THE SPECIES–TIME RELATIONSHIP. Ecology, 2007, 88, 2145-2153.	1.5	23
61	A NEW CLASS OF MODELS OF SPATIAL DISTRIBUTION. Ecological Monographs, 2007, 77, 269-284.	2.4	24
62	Effects of Long-term Experimental Warming on Aphid Density in the Field. Journal of the Kansas Entomological Society, 2007, 80, 156-168.	0.1	26
63	COMPENSATORY RESPONSES TO LOSS OF WARMING-SENSITIVE PLANT SPECIES. Ecology, 2007, 88, 740-748.	1.5	58
64	RESPONSE OF COMPLEX FOOD WEBS TO REALISTIC EXTINCTION SEQUENCES. Ecology, 2007, 88, 671-682.	1.5	164
65	The Significance of the Erosion-induced Terrestrial Carbon Sink. BioScience, 2007, 57, 337-346.	2.2	348
66	Reproductive and physiological responses to simulated climate warming for four subalpine species. New Phytologist, 2007, 173, 121-134.	3.5	46
67	Human population as a dynamic factor in environmental degradation. Population and Environment, 2007, 28, 223-236.	1.3	111
68	Effect of community assembly and primary succession on the species-area relationship in disturbed ecosystems. Ecography, 2006, 29, 866-872.	2.1	26
69	Missing feedbacks, asymmetric uncertainties, and the underestimation of future warming. Geophysical Research Letters, 2006, 33, n/a-n/a.	1.5	64
70	Biophysical and Biogeochemical Responses to Climate Change Depend on Dispersal and Migration. BioScience, 2006, 56, 407.	2.2	34
71	Shifts in plant dominance control carbon-cycle responses to experimental warming and widespread drought. Environmental Research Letters, 2006, 1, 014001.	2.2	38
72	SUBALPINE FOREST CARBON CYCLING: SHORT- AND LONG-TERM INFLUENCE OF CLIMATE AND SPECIES. , 2005, 15, 1984-1999.		45

#	Article	IF	CITATIONS
73	Dynamic and complex microclimate responses to warming and grazing manipulations. Global Change Biology, 2005, 11, 1440-1451.	4.2	108
74	A THEORY OF SPATIAL STRUCTURE IN ECOLOGICAL COMMUNITIES AT MULTIPLE SPATIAL SCALES. Ecological Monographs, 2005, 75, 179-197.	2.4	81
75	RESPONSE OF PLANT PATHOGENS AND HERBIVORES TO A WARMING EXPERIMENT. Ecology, 2004, 85, 2570-2581.	1.5	151
76	Self‣imilarity, the Power Law Form of the Speciesâ€Area Relationship, and a Probability Rule: A Reply to Maddux. American Naturalist, 2004, 163, 627-633.	1.0	22
77	Experimental warming causes large and rapid species loss, dampened by simulated grazing, on the Tibetan Plateau. Ecology Letters, 2004, 7, 1170-1179.	3.0	456
78	In situ photosynthetic freezing tolerance for plants exposed to a global warming manipulation in the Rocky Mountains, Colorado, USA. New Phytologist, 2004, 162, 331-341.	3.5	56
79	Convergence across biomes to a common rain-use efficiency. Nature, 2004, 429, 651-654.	13.7	968
80	Climate change and extinction risk. Nature, 2004, 430, 34-34.	13.7	111
81	A Decision Matrix Approach to Evaluating the Impacts of Land-Use Activities Undertaken to Mitigate Climate Change. Climatic Change, 2004, 63, 247-257.	1.7	19
82	Dead wood biomass and turnover time, measured by radiocarbon, along a subalpine elevation gradient. Oecologia, 2004, 141, 641-651.	0.9	135
83	THE VALUE OF NULL THEORIES IN ECOLOGY. Ecology, 2004, 85, 1792-1794.	1.5	34
84	INTEGRATING EXPERIMENTAL AND GRADIENT METHODS IN ECOLOGICAL CLIMATE CHANGE RESEARCH. Ecology, 2004, 85, 904-916.	1.5	229
85	Enhanced growth of sagebrush (Artemisia tridentata) in response to manipulated ecosystem warming. Global Change Biology, 2003, 9, 736-742.	4.2	53
86	Changes in flowering and abundance of Delphinium nuttallianum (Ranunculaceae) in response to a subalpine climate warming experiment. Global Change Biology, 2003, 9, 885-894.	4.2	93
87	Species richness, endemism, and abundance patterns: tests of two fractal models in a serpentine grassland. Ecology Letters, 2003, 6, 919-928.	3.0	51
88	Tail of death and resurrection. Nature, 2003, 424, 1006-1007.	13.7	52
89	SUBALPINE MEADOW FLOWERING PHENOLOGY RESPONSES TO CLIMATE CHANGE: INTEGRATING EXPERIMENTAL AND GRADIENT METHODS. Ecological Monographs, 2003, 73, 69-86.	2.4	365
90	Assessing the Response of Terrestrial Ecosystems to Potential Changes in Precipitation. BioScience, 2003, 53, 941.	2.2	680

#	Article	IF	CITATIONS
91	SUBALPINE MEADOW FLOWERING PHENOLOGY RESPONSES TO CLIMATE CHANGE: INTEGRATING EXPERIMENTAL AND GRADIENT METHODS. , 2003, 73, 69.		1
92	Plant community composition mediates both large transient decline and predicted long-term recovery of soil carbon under climate warming. Global Biogeochemical Cycles, 2002, 16, 3-1-3-18.	1.9	113
93	Response of nitrogen cycling to simulated climate change: differential responses along a subalpine ecotone. Global Change Biology, 2001, 7, 193-210.	4.2	110
94	PLANT RESPONSES TO EXPERIMENTAL WARMING IN A MONTANE MEADOW. Ecology, 2001, 82, 637-648.	1.5	140
95	CONTROL OF LITTER DECOMPOSITION IN A SUBALPINE MEADOW–SAGEBRUSH STEPPE ECOTONE UNDER CLIMATE CHANGE. , 2001, 11, 1206-1223.		35
96	Title is missing!. Plant Ecology, 2000, 146, 195-204.	0.7	32
97	Self-Similarity and Clustering in the Spatial Distribution of Species. Science, 2000, 290, 671a-671.	6.0	37
98	CLIMATE CHANGE: Equity and Greenhouse Gas Responsibility. Science, 2000, 289, 2287-2287.	6.0	123
99	Global Warming and Terrestrial Ecosystems: A Conceptual Framework for Analysis. BioScience, 2000, 50, 871.	2.2	599
100	Ecosystem Climate Manipulations. , 2000, , 353-369.		20
101	Finite Size Scaling in Ecology. Physical Review Letters, 1999, 83, 4212-4214.	2.9	34
102	The effect of experimental ecosystem warming on CO 2 fluxes in a montane meadow. Global Change Biology, 1999, 5, 125-141.	4.2	146
103	Selection of micro-organisms in a spatially explicit environment and implications for plant access to nitrogen. Journal of Ecology, 1998, 86, 841-853.	1.9	22
104	TERRESTRIAL ECOSYSTEM FEEDBACKS TO GLOBAL CLIMATE CHANGE. Annual Review of Environment and Resources, 1997, 22, 75-118.	1.2	77
105	Changes in water relations for leaves exposed to a climate-warming manipulation in the Rocky Mountains of Colorado. Environmental and Experimental Botany, 1997, 37, 115-123.	2.0	37
106	Effects of manipulated soil microclimate on mesofaunal biomass and diversity. Soil Biology and Biochemistry, 1996, 28, 313-322.	4.2	69
107	High-temperature tolerance of Artemisia tridentata and Potentilla gracilis under a climate change manipulation. Oecologia, 1996, 108, 224-231.	0.9	41
108	Feedbacks, thresholds and synergies in global change: population as a dynamic factor. Biodiversity and Conservation, 1996, 5, 1069-1083.	1.2	11

#	Article	IF	CITATIONS
109	Methane consumption by montane soils: implications for positive and negative feedback with climatic change. Biogeochemistry, 1996, 32, 53.	1.7	73
110	Global Warming and Soil Microclimate: Results from a Meadow-Warming Experiment. , 1995, 5, 132-150.		258
111	Shifting Dominance Within a Montane Vegetation Community: Results of a Climate-Warming Experiment. Science, 1995, 267, 876-880.	6.0	466
112	Acidification and Salamander Recruitment. BioScience, 1994, 44, 125-126.	2.2	2
113	On Reauthorization of the Endangered Species Act. Conservation Biology, 1994, 8, 1-3.	2.4	27
114	Mutualism and Competition between Plants and Decomposers: Implications for Nutrient Allocation in Ecosystems. American Naturalist, 1993, 141, 829-846.	1.0	115
115	A celebration of birds. BioScience, 1989, 39, 492-493.	2.2	0
116	Possible Effects of Acidic Deposition on a Rocky Mountain Population of the Tiger Salamander Ambystoma tigrtinum. Conservation Biology, 1989, 3, 149-158.	2.4	81
117	Arctic aerosol and Arctic climate: Results from an energy budget model. Climatic Change, 1988, 13, 161-189.	1.7	1
118	WATER CONSTRAINTS ON ENERGY DEVELOPMENT: A FRAMEWORK FOR ANALYSIS. Journal of the American Water Resources Association, 1983, 19, 51-57.	1.0	2
119	Bad News: Is It True?. Science, 1980, 210, 1296-1301.	6.0	2
120	Possible Bootstrap Origin of Thermodynamic Inclusive Spectra. Physical Review D, 1972, 6, 2522-2530.	1.6	7
121	Theory of Large-Momentum-Transfer Hadron Production in High-Energy, Inelastic Hadron-Hadron Scattering. Physical Review D, 1970, 1, 2603-2609.	1.6	3
122	Comment on High-Energy Wide-Angle Proton Compton Scattering. Physical Review D, 1970, 1, 1512-1512.	1.6	0
123	Unified Treatment of Hadronic Processes Involving High-Mass Virtual Photons. Physical Review, 1969, 188, 2372-2377.	2.7	5
124	Bootstrap Prediction for the Wide-Angle Proton-Proton Scattering Amplitude. Physical Review, 1969, 184, 1948-1950.	2.7	11
125	Off-Mass-Shell Theory of the Bootstrap and Composite-Particle Scattering. Physical Review, 1969, 184, 1936-1947.	2.7	9
126	Crossing-Symmetric Bootstrap and Exponentially Falling Form Factors. Physical Review, 1968, 165, 1557-1564.	2.7	36

#	Article	IF	CITATIONS
127	Possible Enhancement of Two-Photon-Exchange Effects in Large-Momentum-Transfer Electron-Proton Scattering. Physical Review, 1968, 171, 1832-1833.	2.7	8
128	Asymptotic Vertex Function in a Crossing-Symmetric Bootstrap Model of the Hadrons. Physical Review, 1968, 171, 1825-1831.	2.7	16
129	Kinematic Constraints for Infinitely Rising Regge Trajectories. Physical Review, 1967, 164, 1841-1844.	2.7	17
130	Mass Perturbations in a Bethe-Salpeter-Equation Model of the Nucleon. Physical Review, 1967, 158, 1521-1529.	2.7	3
131	Mixing Effects forï†,ï‰, andïOMesons. Physical Review, 1964, 135, B459-B466.	2.7	24