

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6603904/publications.pdf

Version: 2024-02-01

ΟΠΑΝ

#	Article	IF	CITATIONS
1	Effect of drying method on the microstructures and mechanical strength of polyacrylonitrile nascent fibers. Drying Technology, 2022, 40, 1329-1337.	3.1	1
2	Interior morphological feature of PAN nascent fibers and precursor fibers revealed by ultrathin section and solution etching. Polymer, 2022, 239, 124431.	3.8	4
3	New insight into structure-property correlation of polyacrylonitrile precursor fibers and resultant carbon fibers. Journal of Polymer Research, 2022, 29, .	2.4	5
4	Low-cost and facile synthesis of LAGP solid state electrolyte via a co-precipitation method. Applied Physics Letters, 2022, 121, 023904.	3.3	8
5	Giant and robust intrinsic spin Hall effects in metal dihydrides: A first-principles prediction. Physical Review B, 2021, 103, .	3.2	6
6	Influencing factors and growth kinetics analysis of carbon nanotube growth on the surface of continuous fibers. Nanotechnology, 2021, 32, 285702.	2.6	14
7	Study on the relationship between chemical structure transformation and morphological change of polyacrylonitrile based preoxidized fibers. European Polymer Journal, 2021, 159, 110742.	5.4	6
8	Microfibril alignment induced by stretching fields during the dry-jet wet spinning process: Reinforcement on polyacrylonitrile fiber mechanical properties. Polymer Testing, 2020, 81, 106191.	4.8	16
9	From Microfibrillar Network to Lamellae during the Coagulation Process of Polyacrylonitrile Fiber: Visualization of Intermediate Structure Evolution. Macromolecules, 2020, 53, 8663-8673.	4.8	8
10	Force field in coagulation bath at low temperature induced microfibril evolution within PAN nascent fiber and precursor fiber. Journal of Applied Polymer Science, 2020, 137, 49380.	2.6	10
11	Effect of spinning speed on microstructures and mechanical properties of polyacrylonitrile fibers and carbon fibers. Ceramics International, 2020, 46, 23059-23066.	4.8	13
12	Visualization of microfibrillar elements in crossâ€section of polyacrylonitrile fiber along the fiber spinning line. Microscopy Research and Technique, 2019, 82, 2026-2034.	2.2	5
13	Mesopores variation in polyacrylonitrile fibers during dry-jet wet spinning process. Iranian Polymer Journal (English Edition), 2019, 28, 259-269.	2.4	10
14	Preparation of High-Quality Polyacrylonitrile Precursors for Carbon Fibers Through a High Drawing Ratio in the Coagulation Bath During a Dry-Jet Wet Spinning Process. Journal of Macromolecular Science - Physics, 2019, 58, 128-140.	1.0	17
15	Correlation between fibril structures and mechanical properties of polyacrylonitrile fibers during the dryâ€ j et wet spinning process. Journal of Applied Polymer Science, 2019, 136, 47336.	2.6	17
16	Research on the multi-scale microstructure of polyacrylonitrile precursors prepared by a dry-jet wet spinning process. High Performance Polymers, 2019, 31, 662-670.	1.8	3
17	Research on PAN Nascent Fiber Interior Microstructure through Ultrasonic Etching and Ultrathin Sectioning. Polymer Science - Series A, 2018, 60, 594-598.	1.0	4
18	Fibril microstructural changes of polyacrylonitrile fibers during the post-spinning process. Colloid and Polymer Science, 2018, 296, 1307-1311.	2.1	5