
Delphine Destoumieux-Garzon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6603687/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Prevalence and polymorphism of a mussel transmissible cancer in Europe. Molecular Ecology, 2022, 31, 736-751.	2.0	42
2	Getting out of crises: Environmental, social-ecological and evolutionary research is needed to avoid future risks of pandemics. Environment International, 2022, 158, 106915.	4.8	18
3	The COVID-19 pandemic and global environmental change: Emerging research needs. Environment International, 2021, 146, 106272.	4.8	157
4	The Pacific Oyster Mortality Syndrome, a Polymicrobial and Multifactorial Disease: State of Knowledge and Future Directions. Frontiers in Immunology, 2021, 12, 630343.	2.2	47
5	On the need for integrating cancer into the One Health perspective. Evolutionary Applications, 2021, 14, 2571-2575.	1.5	9
6	Resistance of the oyster pathogen <i>Vibrio tasmaniensis</i> LGP32 against grazing by <i>Vannella</i> sp. marine amoeba involves Vsm and CopA virulence factors. Environmental Microbiology, 2020, 22, 4183-4197.	1.8	10
7	Contribution of Viral Genomic Diversity to Oyster Susceptibility in the Pacific Oyster Mortality Syndrome. Frontiers in Microbiology, 2020, 11, 1579.	1.5	14
8	Vibrios – from genes to ecosystems. Environmental Microbiology, 2020, 22, 4093-4095.	1.8	2
9	Alterins Produced by Oyster-Associated Pseudoalteromonas Are Antibacterial Cyclolipopeptides with LPS-Binding Activity. Marine Drugs, 2020, 18, 630.	2.2	15
10	<i>Vibrio</i> –bivalve interactions in health and disease. Environmental Microbiology, 2020, 22, 4323-4341.	1.8	72
11	Functional Insights From the Evolutionary Diversification of Big Defensins. Frontiers in Immunology, 2020, 11, 758.	2.2	35
12	Vibrio splendidus Oâ€antigen structure: a tradeâ€off between virulence to oysters and resistance to grazers. Environmental Microbiology, 2020, 22, 4264-4278.	1.8	14
13	A Sustained Immune Response Supports Long-Term Antiviral Immune Priming in the Pacific Oyster, Crassostrea gigas. MBio, 2020, 11, .	1.8	49
14	Species-specific mechanisms of cytotoxicity toward immune cells determine the successful outcome of Vibrioinfections. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 14238-14247.	3.3	62
15	The Ancestral N-Terminal Domain of Big Defensins Drives Bacterially Triggered Assembly into Antimicrobial Nanonets. MBio, 2019, 10, .	1.8	35
16	Inefficient immune response is associated with microbial permissiveness in juvenile oysters affected by mass mortalities on field. Fish and Shellfish Immunology, 2018, 77, 156-163.	1.6	32
17	<i>csrB</i> Gene Duplication Drives the Evolution of Redundant Regulatory Pathways Controlling Expression of the Major Toxic Secreted Metalloproteases in <i>Vibrio tasmaniensis</i> LGP32. MSphere, 2018, 3, .	1.3	52
18	Oyster Farming, Temperature, and Plankton Influence the Dynamics of Pathogenic Vibrios in the Thau Lagoon. Frontiers in Microbiology, 2018, 9, 2530.	1.5	16

#	Article	IF	CITATIONS
19	Immune-suppression by OsHV-1 viral infection causes fatal bacteraemia in Pacific oysters. Nature Communications, 2018, 9, 4215.	5.8	217
20	Massive Gene Expansion and Sequence Diversification Is Associated with Diverse Tissue Distribution, Regulation and Antimicrobial Properties of Anti-Lipopolysaccharide Factors in Shrimp. Marine Drugs, 2018, 16, 381.	2.2	27
21	The One Health Concept: 10 Years Old and a Long Road Ahead. Frontiers in Veterinary Science, 2018, 5, 14.	0.9	383
22	The paralytic shellfish toxin, saxitoxin, enters the cytoplasm and induces apoptosis of oyster immune cells through a caspase-dependent pathway. Aquatic Toxicology, 2017, 190, 133-141.	1.9	27
23	Immunity in Molluscs. , 2016, , 417-436.		10
24	Copper homeostasis at the host vibrio interface: lessons from intracellular vibrio transcriptomics. Environmental Microbiology, 2016, 18, 875-888.	1.8	45
25	Antimicrobial peptides in marine invertebrate health and disease. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150300.	1.8	101
26	A hemocyanin-derived antimicrobial peptide from the penaeid shrimp adopts an alpha-helical structure that specifically permeabilizes fungal membranes. Biochimica Et Biophysica Acta - General Subjects, 2016, 1860, 557-568.	1.1	45
27	An intimate link between antimicrobial peptide sequence diversity and binding to essential components of bacterial membranes. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 958-970.	1.4	86
28	The emergence of Vibrio pathogens in Europe: ecology, evolution, and pathogenesis (Paris, 11–12th) Tj ETQq	000rgBT 1.5	- /Oyerlock 10
29	Taking Advantage of Electric Field Induced Bacterial Aggregation for the Study of Interactions between Bacteria and Macromolecules by Capillary Electrophoresis. Analytical Chemistry, 2015, 87, 6761-6768.	3.2	9
30	The new insights into the oyster antimicrobial defense: Cellular, molecular and genetic view. Fish and Shellfish Immunology, 2015, 46, 50-64.	1.6	89
31	Environmental microbiology as a mosaic of explored ecosystems and issues. Environmental Science and Pollution Research, 2015, 22, 13577-13598.	2.7	10
32	Outer membrane vesicles are vehicles for the delivery of <scp><i>V</i></scp> <i>ibrio tasmaniensis</i> virulence factors to oyster immune cells. Environmental Microbiology, 2015, 17, 1152-1165.	1.8	75
33	Resistance to Antimicrobial Peptides in Vibrios. Antibiotics, 2014, 3, 540-563.	1.5	24
34	Antimicrobial Histones and DNA Traps in Invertebrate Immunity. Journal of Biological Chemistry, 2014, 289, 24821-24831.	1.6	87
35	Functional Divergence in Shrimp Anti-Lipopolysaccharide Factors (ALFs): From Recognition of Cell Wall Components to Antimicrobial Activity. PLoS ONE, 2013, 8, e67937.	1.1	73
36	Field enhanced bacterial sample stacking in isotachophoresis using wide-bore capillaries. Journal of	1.8	12

Chromatography A, 2012, 1268, 180-184.

#	Article	IF	CITATIONS
37	Expression, tissue localization and synergy of antimicrobial peptides and proteins in the immune response of the oyster Crassostrea gigas. Developmental and Comparative Immunology, 2012, 37, 363-370.	1.0	54
38	The Antimicrobial Defense of the Pacific Oyster, Crassostrea gigas. How Diversity may Compensate for Scarcity in the Regulation of Resident/Pathogenic Microflora. Frontiers in Microbiology, 2012, 3, 160.	1.5	80
39	Cecropins as a marker of Spodoptera frugiperda immunosuppression during entomopathogenic bacterial challenge. Journal of Insect Physiology, 2012, 58, 881-888.	0.9	39
40	Class II Microcins. , 2011, , 309-332.		11
41	Big Defensins, a Diverse Family of Antimicrobial Peptides That Follows Different Patterns of Expression in Hemocytes of the Oyster Crassostrea gigas. PLoS ONE, 2011, 6, e25594.	1.1	103
42	Use of OmpU porins for attachment and invasion of <i>Crassostrea gigas</i> immune cells by the oyster pathogen <i>Vibrio splendidus</i> . Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 2993-2998.	3.3	173
43	Innate Immune Responses of a Scleractinian Coral to Vibriosis. Journal of Biological Chemistry, 2011, 286, 22688-22698.	1.6	101
44	The major outer membrane protein OmpU of <i>Vibrio splendidus</i> contributes to host antimicrobial peptide resistance and is required for virulence in the oyster <i>Crassostrea gigas</i> . Environmental Microbiology, 2010, 12, 951-963.	1.8	98
45	Insight into Invertebrate Defensin Mechanism of Action. Journal of Biological Chemistry, 2010, 285, 29208-29216.	1.6	117
46	Isolation and Characterization of Two Members of the Siderophore-Microcin Family, Microcins M and H47. Antimicrobial Agents and Chemotherapy, 2010, 54, 288-297.	1.4	99
47	The <i>dlt</i> Operon of <i>Bacillus cereus</i> Is Required for Resistance to Cationic Antimicrobial Peptides and for Virulence in Insects. Journal of Bacteriology, 2009, 191, 7063-7073.	1.0	72
48	NMR structure of <i>r</i> ALFâ€ <i>Pm3</i> , an antiâ€lipopolysaccharide factor from shrimp: Model of the possible lipid Aâ€binding site. Biopolymers, 2009, 91, 207-220.	1.2	76
49	Spodoptera frugiperda X-Tox Protein, an Immune Related Defensin Rosary, Has Lost the Function of Ancestral Defensins. PLoS ONE, 2009, 4, e6795.	1.1	18
50	Post-Translational Modification and folding of A Lasso-Type Gene-Encoded Antimicrobial Peptide Require Two Enzymes only in Escherichia coli. Advances in Experimental Medicine and Biology, 2009, 611, 35-36.	0.8	7
51	Biosynthesis of Siderophore-Peptides, A Class of Potent Antimicrobial Peptides from Enterobacteria, Requires Two Precursors. Advances in Experimental Medicine and Biology, 2009, 611, 33-34.	0.8	0
52	Evidence of a bactericidal permeability increasing protein in an invertebrate, the <i>Crassostrea gigas Cg</i> -BPI. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 17759-17764.	3.3	124
53	Insight into Siderophore-Carrying Peptide Biosynthesis: Enterobactin Is a Precursor for Microcin E492 Posttranslational Modification. Antimicrobial Agents and Chemotherapy, 2007, 51, 3546-3553.	1.4	36
54	Microcins, gene-encoded antibacterial peptides from enterobacteria. Natural Product Reports, 2007, 24, 708.	5.2	326

#	Article	IF	CITATIONS
55	Two Enzymes Catalyze the Maturation of a Lasso Peptide in Escherichia coli. Chemistry and Biology, 2007, 14, 793-803.	6.2	130
56	Identification of a Vibrio strain producing antimicrobial agents in the excretory organs of Nautilus pompilius (Cephalopoda: Nautiloidea). Reviews in Fish Biology and Fisheries, 2007, 17, 197-205.	2.4	2
57	Parasitism of Iron-siderophore Receptors of Escherichia Coli by the Siderophore-peptide Microcin E492m and its Unmodified Counterpart. BioMetals, 2006, 19, 181-191.	1.8	51
58	The iron–siderophore transporter FhuA is the receptor for the antimicrobial peptide microcin J25: role of the microcin Val11–Pro16 β-hairpin region in the recognition mechanism. Biochemical Journal, 2005, 389, 869-876.	1.7	120
59	Microcin J25, from the Macrocyclic to the Lasso Structure: Implications for Biosynthetic, Evolutionary and Biotechnological Perspectives. Current Protein and Peptide Science, 2004, 5, 383-391.	0.7	83
60	Siderophore Peptide, a New Type of Post-translationally Modified Antibacterial Peptide with Potent Activity. Journal of Biological Chemistry, 2004, 279, 28233-28242.	1.6	138
61	Microcin E492 antibacterial activity: evidence for a TonB-dependent inner membrane permeabilization on Escherichia coli. Molecular Microbiology, 2003, 49, 1031-1041.	1.2	72
62	Focus on modified microcins: structural features and mechanisms of action. Biochimie, 2002, 84, 511-519.	1.3	51
63	Human β-Defensin-2 Production in Keratinocytes is Regulated by Interleukin-1, Bacteria, and the State of Differentiation. Journal of Investigative Dermatology, 2002, 118, 275-281.	0.3	293
64	Thermolysin-linearized microcin J25 retains the structured core of the native macrocyclic peptide and displays antimicrobial activity. FEBS Journal, 2002, 269, 6212-6222.	0.2	48
65	Crustacean Immunity. Journal of Biological Chemistry, 2001, 276, 47070-47077.	1.6	288
66	Penaeidins, a family of antimicrobial peptides from penaeid shrimp (Crustacea, Decapoda). Cellular and Molecular Life Sciences, 2000, 57, 1260-1271.	2.4	156
67	Penaeidins, antimicrobial peptides of shrimp: a comparison with other effectors of innate immunity. Aquaculture, 2000, 191, 71-88.	1.7	98
68	Recombinant expression and range of activity of penaeidins, antimicrobial peptides from penaeid shrimp. FEBS Journal, 1999, 266, 335-346.	0.2	154
69	Penaeidins, a New Family of Antimicrobial Peptides Isolated from the Shrimp Penaeus vannamei (Decapoda). Journal of Biological Chemistry, 1997, 272, 28398-28406.	1.6	360